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Chapter One

Introduction

This monograph offers a derivation of all classical and exceptional semi-simple
Lie algebras through a classification of “primitive invariants”. Using somewhat
unconventional notation inspired by the Feynman diagrams of quantum field theory,
the invariant tensors are represented by diagrams; severe limits on what simple
groups could possibly exist are deduced by requiring that irreducible representations
be of integer dimension. The method provides the full Killing-Cartan list of all
possible simple Lie algebras, but fails to prove the existendg pf’s, F7 and Fs.

One simple quantum field theory question started this project; what is the group
theoretic factor for the following Quantum Chromodynamics gluon self-energy di-

agram
@ 2 (1.1)

| first computed the answer f&U (n). There was a hard way of doing it, using
Gell-Mann f;;, andd,;, coefficients. There was also an easy way, where one
could doodle oneself to the answer in a few lines. This is the “birdtracks” method
which will be described here. It works nicely f&iO(n) and Sp(n) as well. Out

of curiosity, | wanted the answer for the remaining five exceptional groups. This
engendered further thought, and that which | learned can be better understood as the
answer to a different question. Suppose someone came into your office and asked,
“On planetZ, mesons consist of quarks and antiquarks, but baryons contain three
guarks in a symmetric color combination. What is the color group?” The answer
is neither trivial, nor without some beauty (plariefuarks can come in 27 colors,

and the color group can g;).

Once you know how to answer such group-theoretical questions, you can answer
many others. This monograph tells you how. Like the brain, it is divided into two
halves; the plodding half and the interesting half.

The plodding half describes how group theoretic calculations are carried out for
unitary, orthogonal and symplectic groups, chapsefis. Except for the “negative
dimensions” of chaptet3 and the “spinsters” of chaptéd, none of that is new, but
the methods are helpful in carrying out daily chores, such as evaluating Quantum
Chromodynamics group theoretic weights, evaluating lattice gauge theory group
integrals, computing /N corrections, evaluating spinor traces, evaluating casimirs,
implementing evaluation algorithms on computers, and so on.

The interesting half, chaptefs$-21, describes the “exceptional magic” (a new
construction of exceptional Lie algebras), the “negative dimensions” (relations be-
tween bosonic and fermionic dimensions). Open problems and personal confessions
are relegated to the epilogue, se&xt.3 The methods used are applicable to field
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theoretic model building. Regardless of their potential applications, the results are
sufficiently intriguing to justity this entire undertaking. In what follows we shall
forget about quarks and quantum field theory, and offer instead a somewhat unortho-
dox introduction to the theory of Lie algebras. If the style is not Bourbaki, it is not
so by accident.

There are two complementary approaches to group theory. lcahenical
approach one chooses the basis, or the Clebsch-Gordan coefficients, as simply as
possible. This is the method which Killing ] and Cartan 0] used to obtain the
complete classification of semi-simple Lie algebras, and which has been brought to
perfection by Dynkin $7]. There exist many excellent reviews of applications of
Dynkin diagram methods to physics, such as the review by Slarigky. [

In thetensorialapproach pursued here, the bases are arbitrary and every statement
is invariant under change of basis. Tensor calculus deals directly with the invariant
blocks of the theory and gives the explicit forms of the invariants, Clebsch-Gordan
series, evaluation algorithms for group theoretic weighis,

The canonical approach is often impractical for computational purposes, as a
choice of basis requires a specific coordinatization of the representation space. Usu-
ally, nothing that we want to compute depends on such a coordinatization; physical
predictions are pure scalar numbers (“color singlets”), with all tensorial indices
summed over. However, the canonical approach can be very useful in determining
chains of subgroup embeddings, we refer the reader to the Slansky revigw [
for such applications. Here we shall concentrate on tensorial methods, borrowing
from Cartan and Dynkin only the nomenclature for identifying irreducible repre-
sentations. Extensive listings of these are given by McKay and Patethdnd
Slansky [L49].

To appreciate the sense in which canonical methods are impractical, letus consider
using them to evaluate the group-theoretic factor associated with diagrdm (
for the exceptional groug’s. This would involve summations over 8 structure
constants. The Cartan-Dynkin construction enables us to construct them explicitly;
an E structure constant has abau? /6 elements, and the direct evaluation of the
group-theoretic factor for diagrarh.(l) is tedious even on a computer. An evaluation
in terms of a canonical basis would be equally tediousStoi(16); however, the
tensorial approach illustrated by the example of se&yields the answer for all
SU(n) in a few steps.

Simplicity of such calculations is one motivation for formulating a tensorial ap-
proach to exceptional groups. The other is the desire to understand their geometrical
significance. The Killing-Cartan classification is based on a mapping of Lie algebras
onto a Diophantine problem on the Cartan root lattice. This yields an exhaustive
classification of simple Lie algebras, but gives no insight into the associated geome-
tries. In the 19th century, the geometries or the invariant theory were the central
guestion and Cartan, in his 1894 thesis, made an attempt to identify the primitive
invariants. Most of the entries in his classification were the classical giips),

SO(n) andSp(n). Of the five exceptional algebras, Cartar][identified G2 as
the group of octonion isomorphisms, and noted already in his thesigthiagas a
skew-symmetric quadratic and a symmetric quartic invariant. Dickins@jrchar-
acterizedEg as a 27-dimensional group with a cubic invariant. The fact that the
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orthogonal, unitary and symplectic groups were invariance groups of real, complex
and quaternion norms suggested that the exceptional groups were associated with
octonions, but it took more than fifty years to establish this connection. The re-
maining four exceptional Lie algebras emerged as rather complicated constructions
from octonions and Jordan algebras, known as the Freudenthal-Tits construction. A
mathematician’s history of this subject is given in a delightful review by Freuden-
thal [72]. The problem has been taken up by physicists twice, first by Jordan, von
Neumann and Wignersf], and then in the 1970’s by Girsey and collaborators
[78, 79). Jordanet al.s effort was a failed attempt at formulating a new quantum
mechanics which would explain the neutron, discovered in 1932. However, it gave
rise to the Jordan algebras, which became a mathematics field in itself. @Gtiedey

took up the subject again in the hope of formulating a quantum mechanics of quark
confinement; however, the main applications so far have been in building models of
grand unification.

Although beautiful, the Freudenthal-Tits construction is still not practical for the
evaluation of group-theoretic weights. The reason is this: the construction involves
[3x 3] octonian matrices with octonian coefficients, and the 248 dimensional defin-
ing space off’g is written as a direct sum of various subspaces. This is convenient
for studying subgroup embeddindgs3H], but awkward for group-theoretical com-
putations.

The inspiration for the primitive invariants construction came from the axiomatic
approach of Springefil[i6 147 and Brown [L5]: one treats the defining representa-
tion as a single vector space, and characterizes the primitive invariants by algebraic
identities. This approach solves the problem of formulating efficient tensorial al-
gorithms for evaluating group-theoretic weights and it yields some intuition about
the geometrical significance of the exceptional Lie groups. Such intuition might be
of use to quark-model builders. For example, becdil$é3) has a cubic invariant
€ q,q59., Quantum Chromodynamics, based on this color group, can accommo-
date 3-quark baryons. Are there any other groups that could accommodate 3-quark
singlets? As we shall show,, F; and Ez are some of the groups whose defining
representations possess such invariants.

Beyond its utility as a computational technique, the primitive invariants construc-
tion of exceptional groups yields several unexpected results. First, it generates in
a somewhat magical fashion a triangular array of Lie algebras, depicted inifig.

This is a classification of Lie algebras different from Cartan’s classification; in this
new classification, all exceptional Lie groups appear in the same series (the bot-
tom line of fig.1.1). The second unexpected result is that many groups and group
representations are mutually related by interchanges of symmetrizations and anti-
symmetrizations and replacement of the dimension parameigr—n. | call this
phenomenon “negative dimensions”.

For me, the greatest surprise of all is that in spite of all the magic and the strange
diagrammatic notation, the resulting manuscript is in essence not very different
from Wigner's [L5¢] classic group theory book. Regardless of whether one is doing
atomic, nuclear or particle physics, all physical predictions (“spectroscopic levels”)
are expressed in terms of WigneBa-;j coefficients, which can be evaluated by
means of recursive or combinatorial algorithms.
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Figure 1.1 The “magic triangle” for Lie algebras. The Freudenthal “magic square”
is marked by the dotted line. The number in the lower left corner of each
entry is the dimension of the defining representation. For more details
consult chapter 21.
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Chapter Two

A preview

The theory of Lie groups presented here had mutated greatly throughout its gen-
esis. It arose from concrete calculations motivated by physical problems; but as
it was written, the generalities were collected into introductory chapters, and the
applications receded later and later into the text.

As a result, the first seven chapters are largely a compilation of definitions and
general results which might appear unmotivated on first reading. The reader is
advised to work through the examples, s@c?.and sect2.3in this chapter, jump
to the topic of possible interest (such as the unitary groups, ch@pterthe Fg
family, chapterl?), and birdtrack if able or backtrack when necessary.

The goal of these notes is to provide the reader with a set of basic group-theoretic
tools. They are not particularly sophisticated, and they rest on a few simple ideas.
The text is long, because various notational conventions, examples, special cases
and applications have been laid out in detail, but the basic concepts can be stated
in a few lines. We shall briefly state them in this chapter, together with several
illustrative examples. This preview presumes that the reader has considerable prior
exposure to group theory; if a concept is unfamiliar, the reader is referred to the
appropriate section for a detailed discussion.

2.1 BASIC CONCEPTS

An average quantum theory is constructed from a few building blocks, which we
shall refer to as thdefining rep They form the defining multiplet of the theory - for
example, the “quark wave functiong,. The group-theoretical problem consists of
determining the symmetry groui@. the group of all linear transformations

¢ =Gw ab=12...n,

which leaves invariant the predictions of the theory. The n] matricesG form
the defining repof the invariance groug. The conjugate multiplet (“antiquarks”)
transforms as

q/a _ Gabqb )
Combinations of quarks and antiquarks transforrnteasors such as

/1. c

PaWpyT = G(lgv 3fprerd 5
Gut. i =GI GG
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(see secB.1.9. Tensor reps are plagued by a proliferation of indices. These indices
can either be replaced by a few collective indices

(b )

ah =G s, (2.1)

or represented diagrammatically

a —e «f a—e——ef
b—€— G F—€=h——=——¢
Cc —> > d ¢ =—r——>—d

(Diagrammatic notation is explained in settl). Collective indices are convenient
for stating general theorems; diagrammatic notation speeds up explicit calculations.
A polynomial

H(q’ F’ 8- ) = hab....nc anb <. Se

is an invariant if (and only if) for any transformatiad € G and for any set of
vectorsy, r, s, . .. (see sect3.3)

H(Gq,Gr,Gs,...) = H(q,T,s,...). (2.2)

An invariance group is defined by itgimitive invariants ie. by a list of the
elementary “singlets” of the theory. For example, the orthogonal gtop is
defined as the group of all transformations which leaves the length of a vector
invariant (see chapter0). Another example is the cola#U (3) of QCD which
leaves invariant the mesofig7) and the baryong;qq) (see sectl5.2). A complete
list of primitive invariantsdefineghe invariance group via the invariance conditions
(2.2); only those transformations, which respect them, are allowed.

It is not necessary to list explicitly the components of primitive invariant tensors
in order to define them. For example, B¢n) group is defined by the requirement
that it leaves invariant a symmetric and invertible tenggr= g,., detg) # 0.

Such definition is basis independent, while a component definjtipa= 1, g1o =
0,920 = 1,...relies on a specific basis choice. We shall define all simple Lie groups
in this manner, specifying the primitive invariants only by their symmetry, and by
the basis-independent algebraic relations that they must satisfy.

These algebraic relations (which we shall galmitiveness conditionsre hard
to describe without first giving some examples. In their essence they are statements
of irreducibility; for example, if the primitive invariant tensors afe h.au. andhabe,
then hq,.hP¢ must be proportional té¢, as otherwise the defining rep would be
reducible. (Reducibility is discussed in seg, sect.3.5and chapteb).

The objective of physicist's group-theoretic calculations is a description of the
spectroscopy of a given theory. This entails identifying the levels (irreducible mul-
tiplets), the degeneracy of a given level (dimension of the multiplet) and the level
splittings (eigenvalues of various casimirs). The basic idea, that enables us to carry
this program through, is extremely simple: a hermitian matrix can be diagonalized.
This fact has many names: Schur’s lemma, Wigner-Eckart theorem, full reducibility
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of unitary reps, and so on (see s&&tl and sect5.3). We exploit it by construct-
ing invariant hermitian matrices! from the primitive invariant tensors\/’s have
collective indicesZ.1) and act on tensors. Being hermitian, they can be diagonalized
A0 0
0 M O

cmMct=10 0 X\
A2

and their eigenvalues can be used to construct projection operators which reduce
multiparticle states into direct sums of lower-dimensional reps (see3drt.

PZ-:HM:CT : S : C.

i N
0 ...
0 o
' (2.3)

An explicit expression for the diagonalizing matéixClebsch-Gordan coefficients,
sect.4.2) is unnecessary — it is in fact often more of an impediment than an aid, as it
obscures the combinatorial nature of group theoretic computations (seé.ggct.

All that is needed in practice is knowledge of the characteristic equation for the
invariant matrixM (see sect3.4). The characteristic equation is usually a simple
consequence of the algebraic relations satisfied by the primitive invariants, and the
eigenvalues\; are easily determined\;’ s determine the projection operatafs,
which in turn contain all relevant spectroscopic information: the rep dimension is
given bytr P;, and the casimirs, §'s, crossing matrices and recoupling coefficients
(see chapteb) are traces of various combinations Bfs. All these numbers are
combinatoric they can often be interpreted as the number of different colorings of
a graph, the number of singlets, and so on.

The invariance group is determined by considering infinitesimal transformations

GZ ~ (Sg + ’LGZ(TZ)Z .
The generator§; are themselves clebsches, elements of the diagonalizing matrix
C for the tensor product of the defining rep and its conjugate. They project out
the adjoint rep and are constrained to satisfy ith@riance conditiong2.2) for
infinitesimal transformations (see set# and sect4.5):

(T0) % R + (T0)8 by — (1) &gy S +...=0

O =

L...=0. (24)
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As the corresponding projector operators are already known, we have an explicit
construction of the symmetry group (at least infinitesimally — we will not consider
discrete transformations).

If the primitive invariants are bilinear, the above procedure leads to the familiar
tensor reps of classical groups. However, for trilinear or higher invariants the results
are more surprising. In particular, all exceptional Lie groups emerge in a pattern of
solutions which we will refer to as a “magic triangle”. The logic of the construction
can be schematically indicated by the following chains of subgroups (see ch@jpter

Primitive invariants Invariance group
aq SuU(n)
qq SO‘(r( Sph)
qqaq Eo+...
qqaq E+
higher order Egt...

In the above diagram the arrows indicate the primitive invariants which charac-
terize a particular group. For exampleg; primitives are a sesquilinear invariayd,
a skew symmetrigp invariant and a symmetrigyqq (see chapte?0).

The strategy is to introduce the invariants one by one, and study the way in
which they split up previously irreducible reps. The first invariant might be realiz-
able in many dimensions. When the next invariant is added (3€gt.the group
of invariance transformations of the first invariant splits into two subsets; those
transformations which preserve the new invariant, and those which do not. Such
decompositions yield Diophantine conditions on rep dimensions. These conditions
are so constraining that they limit the possibilities to a few which can be easily
identified.

To summarize; in the primitive invariants approach, all simple Lie groups, clas-
sical as well as exceptional, are constructed by (see chapter

i) defining a symmetry group by specifying a list@imitive invariants

i) using primitivenessandinvarianceconditions to obtain algebraic relations
between primitive invariants,

iii) constructinginvariant matricesacting on tensor product spaces,

iv) constructingprojection operatordor reduced rep from characteristic equa-
tions for invariant matrices.

Once the projection operators are known, all interesting spectroscopic numbers can
be evaluated.
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The foregoing run through the basic concepts was inevitably obscure. Perhaps
working through the next two examples will make things clearer. The first exam-
ple illustrates computations with classical groups. The second example is more
interesting; it is a sketch of construction of irreducible rep&ef

2.2 FIRST EXAMPLE: SU(N)

How do we describe the invariance group that preserves the norm of a complex
vector? Thdist of primitivesconsists of a single primitive invariant
n
m(p,q) = 51?pr(1, = Z(pa)*Qa-
a=1
The Kroneckep is the only primitive invariant tensor. We can immediately write
down the twainvariant matriceson the tensor product of the defining space and its
conjugate:

d—<—c¢
identity : 195 = 6855 =
’ a—>—»b

a c a Sc d ¢
trace : d,b = 5(15() = ) C .
a b

The characteristic equatiorior 7" written out in the matrix, tensor and birdtrack
notations is

T2 =nT
T3 ITee=0690606508 =T

AL GIDLE

Here we have usetf = n, the dimension of the defining vector space. The roots
are\; = 0, Ao = n, and the correspondingojection operatorsare

SU(n) adjoint rep: p = I=mt—q_1
—
= _ 1
> -, i2C @5)
U(n) singlet: P = T01_1p_ %) C

Now we can evaluate any number associated withSttig¢n) adjoint rep, such as
its dimension and various casimirs.

Thedimension®f the two reps are computed by tracing the corresponding pro-
jection operators (see sedt4)

SU(n) adjoint: dy =tr P, = O . =52 — 155;5;;
n

KAl
=n?-1

. 1
singlet: do =tr P, = —S =
n
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To evaluatecasimirs we need to fix the overall normalization of the generators
of SU(n). Our convention is to take

The value of the quadratic casimir for the defining rep is computed by substituting
the adjoint projection operator

SU(n): Cpdt = (T,;T;)" ;@-za_@__la_(_

2
n®—1
In order to evaluate the quadratic casimir for the adjoint rep, we need to replace the

structure constant€’; ;;, by theirLie algebradefinition (see sect.5)
TT; —T;T; =iCyji,

- X - Y

Tracing with7},, we can expres§';;;, in terms of the defining rep traces:
’LCij =tr TT Tk — tr T TTk

L0 o

The adjoint quadratic casimr;,,,,, C™™ is now evaluated by first eliminating;;.’'s
in favor of the defining rep:

n
m

The remaining’;;;, can be unwound by the Lie algebra commutator

o 0 o

We have already evaluated the quadratic casith) (n the first term. The second
term we evaluate by substituting the adjoint projection operator

COS D O

tr (LT3 Te) = (Th)a (Py) g, 5(T))e = (Ta(Th)e — %(Ti)Z(Tj)Z :

a c

The (T;)%(T;)< term vanishes by the tracelessnes$ 8. This can be considered
a consequence of the orthonormality of the two projection operdtoend P; in

(2.5 (see 8.47):

0:P1P2:}© CﬁtrTi:—O:O
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Combining the above expressions we finally obtain

2.1 1
CA:2<” +—>:2n.
n n

The problem {.1) that started all this is evaluated the same way. First we relate the
adjoint quartic casimir to the defining casimirs:

P51
2o-a o
o000

0 ®10-8:0;

and so on. The result is

s [ T =f{ O+ O fef) (<}

(1.1) is now reexpressed in terms of the defining rep casimirs:

OO0 00
s (Y e O i}

The first two terms are evaluated by inserting the adjoint rep projection operators

0O O - {E} OO
:<nn_1> e OO
a2
:<n2—3+%>

and the remaining terms have already been evaluated. Collecting everything to-
gether, we finally obtain

SU(n) : @ = 2n%(n? +12)
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This example was unavoidably lengthy; the main point is that the evaluation is
performed by a substitution algorithm and is easily automated. Any graph, no
matter how complicated, is eventually reduced to a polynomial in trac&s-efn,

ie. the dimension of the defining rep.

2.3 SECOND EXAMPLE: Eg FAMILY

What invariance group preserves norms of complex vectors, as well as a symmetric
cubic invariant

D(p,q,r) = d**paqere = D(q,p,7) = D(p,7,q) ?
We analyze this case following the steps of the summary of 2€ict.

i) primitive invariant tensors
a a

63 =a——0D, dabc = A ) dabc = (dabc)* = A

b c b c

i) primitiveness d,.;d*/® must be proportional té¢, the only primitive 2-index
tensor. We use this to fix the overall normalizatiordgf.’s:

O

iii) invariant hermitian matricesWe shall construct here the adjoint rep projection
operator on the tensor product space of the defining rep and its conjugate. All
invariant matrices on this space are

. d—e—c o d c , d c
505 = o= S =" X
a—>—1© a b a b

They are hermitian in the sense of being invariant under complex conjugation and
transposition of indices (se8.(19).

The adjoint projection operator must be expressible in terms of the four-index
invariant tensors listed above:

(Ti)3(T3)2 = A(8267 + BOgog + Cd™diec)

}—C:A{:JrB) C+C:}<}.

iv) invariance The cubic invariant tensor satisfies4)

A A+ A -

Contracting withd®*¢ we obtain

Lodsme
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Contracting next witti7;), we get an invariance condition on the adjoint projection

Operator:
4:l444{j$L:0

Substituting the adjoint projection operator yields the first relation between the
coefficients in its expansion:

O:n+B+C+2{_«@‘+B+O++C+@‘}

2
0:B+c+"§.

v) the projection operatorshould be orthonormal?, P, = P,d,,. The adjoint
projection operator is orthogonal to the singlet projection oper&taronstructed
in sect.2.2. This yields the second relation on the coefficients:

0=PsP,

1

Finally, the overall normalization factor A is fixed 4 P4 = Pa:

4{::44()4( :A{1+0—%}{:.

Combining the above 3 relations, we obtain the adjoint projection operator for the
invariance group of a symmetric cubic invariant

Y- (T D Cen X

The correspondingharacteristic equatioomentioned in the pointiv of the summary
of sect.2.1, is given in (L8.10.
The dimension of the adjoint rep is obtained by tracing the projection operator

N:@:():<§i>=mm+3+mzﬁ¥iﬁ.

This Diophantine conditions satisfied by a small family of invariance groups,
discussed in chaptd8. The most interesting member of this family is the excep-
tional Lie groupEg, with n = 27 and N = 78.
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Chapter Three

Invariants and reducibility

Basic group theoretic notions are introduced: groups, invariants, tensors, the dia-
grammatic notation for invariant tensors.

The basic idea is simple; a hermitian matrix can be diagonalized. If this matrix
is an invariant matrix, it decomposes the reps of the group into direct sums of lower
dimensional reps.

The key results are the construction of projection operators from invariant matri-
ces @.45, the Clebsch-Gordan coefficients rep of projection operatbfsy, the
invariance conditions4(33 and the Lie algebra relationg.45).

3.1 PRELIMINARIES

In this section we define basic building blocks of the theory to be developed here:
groups, vector spaces, algebretg, This material is covered in any introduction to
group theory 152, 80]. Most of sect.3.1.1to sect.3.1.4is probably known to the
reader and profitably skipped on the first reading.

3.1.1 Groups

Definition. A set of elementg € G forms a group with respect to multiplication
gxg—gif

(a) the setislosedwith respect to multiplication; for any two elements € G,
the producub € G.

(b) the multiplication isassociative
(ab)c = a(be)
for any three elements b, c € G.
(c) there exists aidentityelemente € G such that
eg = ge foranyg € G.
(d) foranyg € G there exists amverseg—! such that
9 lg=g9 " =e.

If the group is finite, the number of elements is calleddtaer of the group and
denotedg|.
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If the multiplicationab = ba is commutative for all, b € G, the group isbelian
Two groups with the same multiplication table are said tisbenorphic

Definition. A subgroupH < G is a subset of that forms a group under multipli-
cation. e is always a subgroup; so ésitself.

Definition. A cyclic groupis a group generated from one of its elements, called
the generator of the cyclic group.stfis the minimum integer such that = e, the
setG = {e,a,a?,---,a" '} is the cyclic group. As all elements commute, cyclic
groups are abelian. Every subgroup of a cyclic group is cyclic.

3.1.2 Vector spaces

Definition. A setV of element, y, z, . . . is called avector(or linear) spaceover
a fieldF if

(a) vector addition“+” is defined in V' such thatV is an abelian group under
addition, with identity elemen.

(b) the set ixlosedwith respect tascalar multiplicationand vector addition
a(x+y)=ax+ay, a,beF, x,yeV
(a +b)x=ax+ bx
a(bx) = (ab)x
lx=x, 0x=0.

Here the field® will be eitherR, the field of reals numbers, @, the field of complex
numbers (quaternion and octonion fields are discussed in1<e6y.

Definition. n-dimensional complex vector spateconsists of alln-multiplets
x = (z1,29,...,2,), z; € C. The two elementsg, y are equal ifr; = y; for all
0 < i <n. The vector addition identity elementls= (0,0, ---,0).

Definition. A complex vector spac¥ is aninner product spaceif, with every
pair of elementx, y € V, there is associated a uniqumer (or scalar product
(z,y) € C, such that

(z,y)=(y,2)"
(az,by) =a"b(x,y), a,beC
(zyax + by)=a(z,x) + b(z,y),

where * denotes complex conjugation.
Without any noteworthy loss of generality, we shall here define the scalar product
of two elements of” by

(m,y) = Zx;y] . (3.1)
j=1
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3.1.3 Algebra

Definition. A set of elements,, of a vector spac& forms an algebra if, in addition
to the vector addition and scalar multiplication;

(a) the setislosedwith respect to multiplicatiof - 7 — 7, so that for any two
elements,,, ts € 7, the product,, - t also belongs tq@:

to-tg =Y tagty. (3.2)
yeT

(b) the multiplication operation isilinear
(ta +t5) by =to -ty +t5-t,
to - (bg+ty) =t tg+ts ty.

The set of numbers, ™ are called thestructure constantsf the algebra. They
form a matrix rep of the algebra

(toz)ﬁ’y = ta,ﬁ’y ) (3.3)

whose dimension is the dimension of the algebra itself.
Depending on what further assumptions one makes on the multiplication, one
obtains different types of algebras. For example, if the multiplication is associative

(to - tg) b, =ty (t5~t7)7
the algebra isssociative Typical examples of products are thmatrix product

(ta - tp)s = (ta)o(tp);  ta€VOV, (3.4)
and thelie product
(ta - ta)s = (ta)o(tp)i — (ta)e(tp)i  ta €V OV, (3.5)

which defines d.ie algebra

As a plethora of vector spaces, indices and conjugations looms large in our im-
mediate future, it pays to streamline the notation now, by singling out one vector
space as “defining”, and replacing complex conjugation by raised indices.

3.1.4 Defining space, tensors, reps

Definition. LetV be thedefiningn-dimensional complex vector space. Associate
with the definingn-dimensional complex vector spatea conjugate(or dual) n-
dimensional vector spadé = {z | z* € V'} obtained by complex conjugation of
elementsr € V. We shall denote the corresponding element’dby raising the
index

xt = (xq)",

so the components of defining space vectors, resp. conjugate vectors, are distin-
guished by lower, resp. upper indices

x=(21,22,...,%pn), T

=<

(3.6)

S
z=(zh 2. . 2"), T €
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Repeated index summation: Throughout this text, the repeated indices are always
summed over

n
Ghwy =) Ghuy, (3.7)
b=1
unless explicitly stated otherwise.

Definition. LetG be a group of transformations acting linearlylonwith the action
of a group elemeny € G on a vectorr € V given by a unitanjnxn] matrix G

x =Gl a,b=1,2,...,n. (3.8)

We shall refer tai® as thedefining repof the group. The action of € G on a
vectorg € V is given by theconjugate repit

2 =2Ghy,  (GNE=(GY)*. (3.9)

Another way to distinguiskd’ from G is to meticulously keep track of the relative
ordering of the indices,

Gt —-at, (G - @,
As we useG' but occasionally, and keeping track of these indices is confusing
enough as is, we desist. By defining the conjugate spazgcomplex conjugation
and inner product3 1), we have already chosen (without any loss of generality)
b as the invariant tensor with the bilinear form, z) = z,2°. From this choice

it follows that, in the applications considered here, the g@up always assumed
unitary

(GHegh =60 (3.10)

Definition. A tensorz € V? @ V7 is any object that transforms under the action
ofg e Gas

/a1a2...aq a1a2...aq dp--~d1 C1C2...Cq
“ by...by _Gbl...bp ) Cg...c2c1 Vdy..dp O (311)

where thel’? @ V¢ tensor repof ¢ € G is defined by

Gy dod = (Ghm (G (Gheen . Gy (3.12)
Tensors can be combined into other tensors by
(a) addition
2qrit = axil + BYgl . aBeC, (3.13)
(b) product
zg%d = xgbcy?g , (3.14)

(c) contraction: Setting an upper and lower index equal and summing over all of its
values yields a tensarc V! @ V4~ without these indices:

be...d abe...d ad abe, d
Ze...f :me...af7 Ze = Lo Yep- (315)
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A tensorz € VP ® V4 transforms linearly under the action gf so it can be
considered a vector in thé= nP*¢ dimensional vector spadé. We can replace
the array of its indices by one collective index:

To = a0 (3.16)
One could be more explicit and give a table like
11...1 21...1
DI =X B2 =T ey Td =Ty (3.17)

but that is unnecessary, as we shall use the compact index notation only as a short-
hand.
Definition. Hermitian conjugationis effected by complex conjugation and index

transposition:
(h")ede = (h5a®)". (3.18)

cde —

Complex conjugation interchanges upper and lower indices, afntransposition
reverses their order. A matrix leermitianif its elements satisfy

(Mg = M2 (3.19)

Definition. The tensor conjugate ta, has form
z® = glbrb (3.20)

Qg...az2ay *

Combined, the above definitions lead to the hermitian conjugation rule for collective
indices: a collective index is raised or lowered by interchanging the upper and lower
indices and reversing their order:

_Jaias...a4 o ) bp.iby
a—{ blbp} - _{aq...agal}' (321)
This transposition convention will be motivated further by the diagrammatic rules

of sect.4.1
The tensor rep3.12) can be treated as[d x d] matrix
Gg = Gall‘:f,'.'..bi;q’ gtl;:-.:gzlﬁ ) (322)

and the tensor transformatio®.{ 1) takes the usual matrix form
xl, = Glag. (3.23)

3.2 INVARIANTS

Definition. The vectory € V' is aninvariant vectoiif for any transformatiory € G
q=Gq. (3.24)
Definition. A tensorz € VP @ V¢ is aninvariant tensoiif for any g € G

. d d
lela2bq = (GT)le (GT)Zﬁ Gy, ---szlefﬁdqcp . (3.25)
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We can state this more compactly by using the notatior3 @&

To =GBlzs. (3.26)

1a2...0p

Here we treatthe tensmﬁl___bq as avector ifd x d] dimensional spacé, = nP*1.
If a bilinear formM (z,y) = % M"y, is invariant for allg € G, the matrix

Mb = Ge(ahyme (3.27)

is aninvariant matrix. Multiplying with G and using the unitary conditio (L0),
we find that the invariant matriceemmutewith all transformationg € G:

(G, M]=0. (3.28)

If we wish to treat a tensor with equal number of upper and lower indices as a
matrix M : VP @ V4 — VP @ V1,
Mé} — NfOr92:--0q dp...dy (329)

by...b, ) Cq...C2C1 )

then the invariance conditio®.£6) will take the commutator form3(28).

Definition. We shall refer to an invariant relation betwegnectors inl” andq
vectors inl” which can be written as a homogeneous polynomial in terms of vector
components, such as

H(z,y,2,7,8) = hihwpyasr®z®, (3.30)

as aninvariantin V¢ @ V? (repeated indices, as always, summed over). In this
example, the coefficients?’_ are components of invariant tensore V3 @ V2,

obeying the invariance conditio8.¢5.
Diagrammatic representation of tensors, such as

heb = (3.31)

a b c de

makes it easier to distinguish different types of invariant tensors. We shall explain in
great detail our conventions for drawing tensors in skedf.sketching a few simple
examples should suffice for the time being.

The standard example of a defining vector space is our 3-dimensional Euclidean
space:V = V is the space of all 3-component real vectois= 3), and exam-
ples of invariants are the lengiyz, z) = ¢;;z,z; and the volumé/(z,y, z) =
€jkTiy; 2. We draw the corresponding invariant tensors as

5y =i ——1, eijkz/]\. (3.32)
i ] ok

Definition. A composednvariant tensor can be written as a product and/or con-
traction of invariant tensors.
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Examples of composed invariant tensors are
i m 1

5ij€klm :l A\ ; 6ijm(smnenkl =/ | | \ - (333)

i k1 m i j k|
The first example corresponds to a product of the two invariattsy)V (z, r, s).
The second involves anindeantraction we can write thisag” (z, y, &) V(z,, s).
In order to proceed, we need to distinguish the “primitive” invariant tensors from
the infinity of composed invariants. We begin by defining a finite basis for invariant
tensors inl’? @ V4:

Definition. A tree invariantcan be represented diagrammatically as a product
of invariant tensors involving no loops of index contractions. We shall denote
by T = {to,t1...t,} a (maximal) set of- linearly independent tree invariants
t, € VP ® V9. As any linear combination df, can serve as a basis, we clearly
have a great deal of freedom in making informed choices for the basis tensors.

Example:Tensors 8.33 are tree invariants. The tensor
i

(3.34)

hijk:l = €Eims€inmEkrn€isr =

j

is not a tree invariant, as it involves a loop.

Definition. An invariant tensor is calledgrimitive invariant tensor, if it cannot be
expressed as a combination of tree invariants composed from lower rank primitive
invariant tensors. LeP = {p1, po,...pr} be the set of all primitives.

For example, the Kronecker delta and the Levi-Civita ten3@4 are the prim-
itive invariant tensors of our 3-dimensional space. The loop contrac3i@d)(is
not a primitive, because by the Levi-Civita completeness rela6ozf)( it reduces
to a sum of tree contractions:

I
i | | —
:j ) Ck+1 k: 5,»j6kl +6il5jk, (335)
j K

(the Levi-Civita tensor is discussed in se&t).

Primitivenessassumption. Any invariant tensoh € V? @ V9 can be expressed
as a linear sum over the tree invariafits V¢ @ V?

h=> h%.. (3.36)
T

In contradistinction to arbitrary composite invariant tensors, the number of tree
invariants for a fixed number of external indices is finite. For example, given the
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n = 3 dimensions primitive® = {4;;, fi;x }, any invariant tensok € V? (here
denoted by a blob) must be expressible as

EJ\A

LD C
+C><+D>—<+EI+FA

\/Q,:))\+\J\+... (3.38)

(3.37)

3.2.1 Algebraof invariants
Any invariant tensor of matrix form3(29
Mﬂ ]V[ala2 Qg dy...dy

by...by ’Cq .cacy

which mapsV’? ® V? — V4 @ VP can be expanded in the basis36). The bases

t,, are themselves matrices¥f @ VV? — V¢ ® VP, and the matrix product of two
basis elements is also an elemenvsf® V? — V¢ ® VP and can be expanded in
the minimal basis:

tats = > (ta)s't,. (3.39)
veT

As the number of tree invariants composed from the primitives is finite, under matrix
multiplication the baset, form a finite algebra, with the coefficiens,)s” giving
their multiplication table. The multiplication coefficients,)s” form a[r x r]-
dimensional matrix rep of, acting on the vectofe, t1,ts, --t,._1). Given a
basis, we can evaluate the matriges’, (t1)g”, (t2)3”, - (tr-—1)g” and their
eigenvalues. For at least one of these matrices all eigenvalues will be distinct (or we
have failed to chose a minimal basis). The projection operator technique & gect.
will enable us to exploit this fact to decompose We® V7 space into- irreducible
subspaces.

This can be said in another way; the choice of bésig, to, - - t,._1} is arbi-
trary, the only requirement being that the basis elements are linearly independent.
Finding a(t,) 3" with all eigenvalues distinct is all we need to construct an orthog-
onal basis{ Py, Py, P»,--- P-_1}, where the basis matricd3 are the projection
operators, to be constructed below in s&ct.
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3.3 INVARIANCE GROUPS

So far we have defined invariant tensors as the tensors invariant under transforma-
tions of a given group. Now we proceed in the other direction: given a set of tensors,
what is the group of transformations that leaves them invariant?

Given a full set of primitives%.30 P = {p1, po, . . ., px }, meaning thaho other
primitives exist, we wish to determine all possible transformations that preserve this
given set of invariant relations.

Definition. An invariance groupg is the set of all linear transformation3.25
which preserve the primitive invariant relations (and, by extensadininvariant
relations)

pi(x,9) =p1(Gz, §GT)
pa(z,y,2,...)=p2(Gz,Gy, Gz ...), cee (3.40)

Unitarity (3.10 guarantees that all contractions of primitive invariant tensors, and
hence all composed tensdisc H are also invariant under action gf As we
considerg is unitary, it follows from 8.10 that the list of primitives must always
include the Kronecker delta.

Example 1 If p“q, is an invariant oty

P, = p"(GTG)5q. = pqa . (3.41)

theng is the fullunitary groupU (n) (invariance group of the complex noiim|? =
2’z,6%), whose elements satisfy

GG =1. (3.42)

Example 2 If we wish thez-direction to be invariant in our 3-dimensional space,
g = (0,0,1) is an invariant vector3.24), and the invariance group 3(2), the
group of all rotations in the-y plane.

3.3.0.1 Which rep is “defining”?

1. The defining spac® need notcarry the lowest dimensional rep 6f it is
merely the space in terms of which we chose to define the primitive invariants.

2. We shall always assume that the Kronecker d&lts one of the primitive
invariants,ie. thatg is a unitary group whose elements satis$y4(). This
restriction to unitary transformations is not essential, but it simplifies proofs of
full reducibility. The results, however, apply as well to the finite-dimensional
reps of non-compact groups, such as the Lorentz g3, 1).
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3.4 PROJECTION OPERATORS

For M, a hermitian matrix, there exists a diagonalizing unitary matrisuch that:

A0
Y 0 0
X 0 0
0 A
oMCt = 0 : S 0 A FE N
0 Y
PP
0 0 o

(3.43)
Here\; are ther distinct roots of the minimal characteristic polynomial
[[( =X =o, (3.44)
i=1
(the characteristic equations will be discussed in €26€}. In the matrixC'(M —
\21)CT the eigenvalues correspondingtgare replaced by zeroes:
A1 — A2
A1 — Ao
AL — Ao

X5 — o
A3 —

and so on, so the product over all factorg — \21)(M — As1) ... with exception

of the (M — A1) factor has non-zero entries only in the subspace associated with

)\1:
1 00
01 0 0
0 0 1
CII(—x1Ct =T =) 0
A1 i#1 0 0
0

In this way, we can associate with each distinct rooa projection operator?;

M —)\1
p,:”ij 4
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which is identity on theth subspace, and zero elsewhere. For example, the projec-
tion operator onto thg; subspace is

1

P =Ct 0 C. (3.46)

The matrices’; areorthogonal
P P; = 6;;P; (no sumory), (3.47)
and satisfy theompleteness relation

i P—1. (3.48)
=1

As tr (CP,CT) = tr P;, the dimension of théth subspace is given by
d; =trP;. (3.49)

It follows from the characteristic equatio.{4) and the form of the projection
operator 8.45) that \; is the eigenvalue af/ on P; subspace:

MP; = \;P; , (no sumon) . (3.50)
Hence, any matrix polynomigl( /) takes the scalar valy& \;) on theP; subspace
J(M)P; = f(\)P;. (3.51)

This, of course, is the real reason why one wants to work with irreducible reps: they
render matrices and “operators” harmlessumbers.

3.5 FURTHER INVARIANTS

Suppose there exists several linearly independent invadian hermitian matrices

My, M, ... and that we have uséd; to decompose thé&dimensional vector space

V = Y@V;. CanM, be usedto further decompogg’ This s the standard problem

of quantum mechanics (simultaneous observables), and the answer is that further
decomposition is possible if, and only if, the invariant matrices commute,

[My, M5] =0, (3.52)
or, equivalently, if all projection operators commute
P,P; = P;P;. (3.53)

Usually the simplest choices of independent invariant matrices do not commute.
In that case, the projection operatdtsconstructed frond/; can be used to project
commuting pieces of/5:

M = PM,P;,  (nosumon).
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ThatMéi) commutes with\/; follows from the orthogonality of>;:

M My = Z/\ MY, Pl =0. (3.54)

Now the characteristic equation fMQ(’) (if nontrivial) can be used to decompose
V; subspace.

An invariant matrix}/ induces a decomposition only if its diagonalized form
(3.43 has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.

In particular, the primitiveness relatiof.87) is a statement that the defining rep
is assumedtreducible.

According to 8.29, an invariant matrix/ commutes with group transformations
[G, M] = 0. Projection operators3(45 constructed from\/ are polynomials in
M, so they also commute with ajle G:

G, P,] =0, (3.55)

(remember thaP; are also invariand x d] matrices). Hence, @l x d] matrix rep
can be written as a direct sumaf, x d;] matrix reps

G=1G1=Y PGP;j=)» PGP =) G;. (3.56)
In the diagonalized re®B(46), the matrixG has a block diagonal form:
Gy O 0
cget=10 G 0 G=%"CGC;. (3.57)
0 0o . @

Representatio&; acts only on the; dimensional subspadé consisting of vectors
Piq, ¢ € V. Inthis way an invariantd x d] hermitian matrix)/ with r distinct
eigenvalues induces a decomposition df@gimensional vector spadéinto a direct
sum ofd;-dimensional vector subspacEs

VE viewe.. .eV,. (3.58)

For a more detailed discussion of recursive reduction, consult appandix
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Diagrammatic notation

The subject of this monograph is some aspects of the representation theory of Lie
groups. However, it is not written in the conventional tensor notation but instead in
terms of an equivalent diagrammatic notation. We shall refer to this style of carry-
ing out group-theoretic calculations as birdtracks. The advantage of diagrammatic
notation will become self-evident, we hope. Two of the principal benefits are that it
eliminates “dummy indices”, and that it does not force group-theoretic expressions
into the 1-dimensional tensor format (both being means whereby identical tensor
expressions can be made to look totally different).

4.1 BIRDTRACKS

We shall often find it convenient to represent agglomerations of invariant tensors
by “birdtracks”, a group-theoretical version of Feynman diagrams. Tensors will be
represented by “vertices” and contractions by “propagators”.

Diagrammatic notation has several advantages over the tensor notation. Diagrams
do not require dummy indices, so explicit labeling of such indices is unnecessary.
More to the point, for a human eye it is easier to identify topologically identical dia-
grams than to recognize equivalence between the corresponding tensor expressions.

In the birdtrack notation, the Kronecker delta is a “propagator”:

5 =b —e— a. (4.1)
For areal defining space there is no distinction betwdéandV/, or up and down
indices, and the lines do not carry arrows.

Any invariant tensor can be drawn as a generalized vertex:
d —e—

To = xgzc —a=—>— X . (42)
b ——

C =—>—
Whether the vertex is drawn as a box or a circle or a dot is matter of taste. The orien-

tation of propagators and vertices in the plane of the drawing is likewise irrelevant.
The only rules are

(1) Arrows pointaway from the uppeindices andoward the loweiindices; the

line flow is “downward”, from upper to lower indices:
a d

hed = . (4.3)
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(2) Diagrammatic notation must indicate which in (out) arrow corresponds to
the first upper (lower) index of the tensor (unless the tensor is cyclically

symmetric);
Here the leftmost
index is the first index

Ripea = . (4.4)

a b c de

(3) The indices are read in tleunterclockwiserder around the vertex:

N

b
b Cop—r X
Tog =\ d=—] . (4.5)
v a

e

Order of readig
the indices

(The upper and the lower indices are read separately in the counterclockwise
order; their relative ordering does not matter.)

Inthe examples of this section we index the externalllines for reader’s convenience,
but indices can always be omitted. An internal line implies a summation over
corresponding indices, and for external lines the equivalent points on each diagram
represent the same index in all terms of a diagrammatic equation.

Hermitian conjugation3.18) does two things:

(a) it exchanges the upper and the lower indigesit reverses the directions of
the arrows

(b) it reverses the order of the indicés, it transposes a diagram into its mirror
image. For example®, the tensor conjugate td.6), is drawn as

=2 = x' lo—a (4.6)

cba

and a contraction of tensog$ andy is drawn as

S

bp...by a1az...0q __ X
ag...a2a19by...by

4.7)

Yo =

Y
<

Y

Y
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4.2 CLEBSCH-GORDAN COEFFICIENTS

Consider the product

O]

1 C (4.8)

of the two terms in the diagonal representation of a projection opefatts) ( This
matrix has non-zero entries only in thig rows of subspac®),. We collect them in
aldy x d] rectangular matrixC)%, o = 1,2,...d, 0 = 1,2,...dx:

(COT - (O
Cx = : ; dx - (4.9)
(CN)4,

d

The indexa in (Cy)g stands for all tensor indices associated withdhe n?*9
dimensional tensor spadé?” @ V4. In the birdtrack notation these indices are
explicit:

b
Cnmtetn, === ¢ (4.10)
9 aq...a2a1 - . .
—— %

Such rectangular arrays are callétebsch-Gordan coefficien(eereafter referred
to as “clebsches” for short). They are explicit mappifgs— V). The conjugate
mappingV, — V' is provided by the product

ct (4.11)

)

which defines thgix d, ] rectangular matrixC*)7, o = 1,2, ...d, 0 = 1,2,...dy:
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Mt o (eMHP
(C}\)Z/\
dx
b, —e—
- A
(C)\)lef]lzb',”aqva _ + _(_0 ) (412)
! . =
& ——
The two rectangular Clebsch-Gordan matriéesandC', are related by hermitian

conjugation.

The tensors, we have considered in s&di,. transform as tensor products of the
defining rep 8.11). In general, tensors transform as tensor products of various reps,
with indices running over the corresponding rep dimensions:

a1 = 1,2,...,d1
as = 1,2,...,d2
zgriiodrta where: (4.13)
Uptq = 1727"'7dp+q'
(4.14)
The action of transformatiogn on the indexy, is given by thedy, x dj,] matrix rep
Gk
The Clebsch-Gordan coefficients are notoriously index-overpopulated, as they re-
quire arep label and a tensor index for each rep in the tensor product. Diagrammatic
notation alleviates this index plague in either of two ways:

(i) one can indicate a rep label on each line:

a, —)‘(—
Copv, 97 = atrd S, (4.15)
a, —>—
(an index, if written, is written at the end of a line; a rep label is written above

the line);

(i) one can draw the propagators (Kronecker deltas) for different reps with dif-
ferent kinds of lines. For example, we shall usually draw the adjoint rep with
a thin line.

By the definition of clebsches3(46), the \ rep projection operator can be written
out in terms of Clebsch-Gordan matric&3*C'y:

CACy=Py,  (nosumon)
A dg...d ..d dg...d
(O 5 (ON s et = (P )y ™ et (4.16)
— A < < €
-
—_—

Y e
Y o

Y
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A specific choice of clebsches is quite arbitrary. All relevant properties of projec-
tion operators (orthogonality, completeness, dimensionality) are independent of the
explicit form of the diagonalization transformatiéh Any set ofC' is acceptable,
as long as it satisfies the orthogonality and completeness conditions. Er@m (
and @.11]) it follows thatC', areorthogonal

C\CH = 5&1 ,
(CN)gs by, " (CM)ay iy =505
A < U A U
—— : —— =t (4.17)

Herel is the[d) x d,] unit matrix, and”’s are multiplied asd, x d] rectangular
matrices.
Thecompleteness relatiof3.48)

Y cren=1, ([d x d] unit matrix) ,
B
ajasz...ap o ay sa dg
Z(C)\)bl...zbq ) (C/\)OH gz...(ciglcl = 5c11 5C22 e 5bq
X

— N —— ———
Yoo o< T =T (4.18)
A ——

—)—- _)_

C*P,=d{C*,
P\CH=6{C*H (no sum on\, 1) , (4.19)
follows immediately from 8.47) and @.17).

4.3 ZERO- AND ONE-DIMENSIONAL SUBSPACES

If a projection operator projects onto a zero-dimensional subspace, it must vanish
identically

—_— A —

dy=0 = Py = : —— .= 0. (420)

This follows from @.46); d, is the number of 1’s on the diagonal on the right-hand
side. Fordy, = 0 the right-hand side vanishes. The general forn?pfs

,
Py=)cxMy, (4.21)
k=1
wherelM;, are the invariant matrices used in construction of the projector operators,
and ¢;, are numerical coefficients. Vanishing &%, therefore implies a relation
among invariant matrices/y,.
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If a projection operator projects onto a 1-dimensional subspace, its expression,
in terms of the Clebsch-Gordan coefficiedsl), involves no summation, so we
can omit the intermediate line

dy=1 = P= | . = (O (Ca) et -
(4.22)

For any subgroup ofU(n), the reps are unitary, with unit determinant. On the
1-dimensional spaces, the group acts triviali,= 1. Hence, ifd, = 1, the
Clebsch-Gordan coefficield, in (4.22) is an invariant tensor ifv? @ V9.

4.4 INFINITESIMAL TRANSFORMATIONS

A unitary transformatiorz, which is infinitesimally close to unity, can be written
as

Gb =60 +iD?, (4.23)

whereD is a hermitian matrix with small element€)?| < 1. The action ofy € G
on the conjugate space is given by

(GNe =62 —iDP. (4.24)

D can be parametrized by < n? real parametersN, the maximal number of
independent parameters, is called the dimension of the group (also the dimension
of the Lie algebra, or the dimension of the adjoint rep).

We shall consider only infinitesimal transformations, of f@ke= 1+iD, | Dy| <
1. We do not study the entire group of invariances, but only the transformations
(3.8) connected to the identity. For example, we shall not consider invariances under
coordinate reflections.

The generators of infinitesimal transformatioA2@ are hermitian matrices and
belong to theD¢ € V ® V space. However, not any elementlofz V generates
an allowed transformation; indeed, one of the main objectives of group theory is to
define the class of allowed transformations.

In sect.3.4we have described the general decomposition of a tensor space into
(inreducible subspaces. As a particular case, consider the decompositian 6t
The corresponding projection operators satisfy the completeness relatién (

1
1=-T+ P4+ E Py
n
A£A

a sc 1 a Sc a c a ¢
5d5bzg5b5d+(PA)bvd+ E (P d
AEA

::%) C+}C+Z:}§{:. (4.25)

If 54 is the only primitive invariant tensor, théh V decomposes into 2 subspaces,
and there are no other irreducible reps. However, if there are further primitive
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invariant tensorsy’ ® V' decomposes into more irreducible reps and therefore the
sum over\. Examples will abound in what follows. The singlet projection operator
T /n always figures in this expansion, &s ¢ is always one of the invariant matrices
(see the example worked out in sex®). Furthermore, the infinitesimal generators
D¢ must belong to at least one of the irreducible subspac&sofl’.

This subspace is called thdjointspace, and its special role warrants introduction
of special notation. We shall refer to this vector space by letten distinction to
the defining spac® of (3.6). We shall denote its dimension by, label its tensor
indices byi, j, k. . ., denote the corresponding Kronecker delta by a thin, straight
line

dij =i —i,i,j=12,...,N, (4.26)

and the corresponding Clebsch-Gordan coefficients by

1 a
Ca)isy = —=(Ti)y = a,b=1,2,...,n
===
i=1,2....N.

MatricesT; are called thgeneratorof infinitesimal transformations. Hereis an
(uninteresting) overall normalization fixed by the orthogonality conditibf7)

(T3 (T;)% =tr (TT;) = ady;

The scale off; is not set, as any overall rescaling can be absorbed into the nor-
malizationa. For our purposes it will be most convenient to use= 1 as the
normalization convention. Other normalizations are commonplace. For example,
SU(2) Pauli matriced; = o; andSU (n) Gell-Mann [73] matricesT; = 1 ); are
conventionally normalized by fixing = 1/2:

(4.27)

The projector relation4.16) expresses the adjoint rep projection operators in terms

of the generators:
a ¢ __ 1 \a \C __ 1
(Pa)ii = (TR = - Y+ (4.29)

Clearly, the adjoint subspace is always included in the stu@5( (there must
exist some allowed infinitesimal generatdpg, or otherwise there is no group to
describe), but how do we determine the corresponding projection operator?

The adjoint projection operator is singled out by the requirement, that the group
transformations do not affect the invariant quantities. (Remember, the group is
definedas the totality of all transformations that leave the invariants invariant.) For
every invariant tensay, the infinitesimal group elemen€s = 1 + i D must satisfy
the invariance condition3(24). ParametrizingD as a projection of an arbitrary
hermitian matrix// € V ® V into the adjoint spacd) = PxH € V ® V:

1 1
Df = —(T){e;, € =—tr(T,H), (4.30)
a a
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we obtain theénvariance conditionwhich thegeneratoramust satisfy: theynni-
hilate invariant tensors

Tig=0. (4.31)

To state the invariance condition for an arbitrary invariant tensor, we need to
define the generators in the tensor reps. By substituing 1 + ie - T + O(€?)
into (3.12 and keeping only the terms linear énwe find that the generators of
infinitesimal transformations for tensor reps act by touching one index at a time:

aiaz...ap d,... _ ay sa ap, sd dy
(Ti)blli,?bq ’gp...:;iglcl - (Tl)cll(s(’; s 6cp 61711 s (qu
00 (T))22 . 800 L 5y 4+ 0880 (Ty)erop 6y
a1 Sas ap i dq ay sa ap A dg
— OAEE e (Tt 6y — = 006 LSSt (T, (4.32)
— l — ¢ € €
— T e = < + — —< , (4.33)
—— —p— > >

(with a relative minus sign between lines flowing in opposite directions). In other
words, the Leibnitz rule obscured by a forest of indices.
Tensor reps of the generators decompose in the same way as the gro@agps (

T,=Y c*Vey. (4.34)
A

— —— A
ST
—— p—p— N

The invariance conditions take a particularly suggestive form in the diagrammatic
notation. @.31) amounts to insertion of a generator into all external legs of the
diagram corresponding to the invariant tengor

A—

(4.35)

The insertions on the lines going into the diagram carry a minus sign relative to the
insertions on the outgoing lines.

Clebsch-Gordan coefficients are also invariant tensors. Multiplying both sides of
(3.57) with C and using orthogonality4(17), we obtain

C\G =G\Cy , (no sum om\). (4.36)
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The Clebsch-Gordan matrix,, is a rectangulajd, x d] matrix, hencey € G acts
onitwith a[d, x dy] rep from the left, and &l x d] rep from the right. .45 is the
statement of invariance for rectangular matrices, analogous2@( the statement
of invariance for square matrices:

Cr=GlC\a,
C*=G'C*G, . (4.37)

The invariance condition for the Clebsch-Gordan coefficients is a special case of
(4.39), the invariance condition for any invariant tensor:

0= —Tl—(/\)c,\ + C\T;

o L

A
+$

A
+$

A

—— ——
—_—— —_——

AN
AN

o2 T o 2 T (4.38)

—_——

The orthogonality conditiord(17) now yields the generators inrep in terms of
the defining rep generators

Y

A A < A -
A < A «
AT — AT — (439)

The reality of the adjoint rep. For hermitian generators, the adjoint rep is
real, and the upper and lower indices need not be distinguished; the “propagator”
needs no arrow. For non-hermitian choices of generators, the adjoint rep is complex
(“gluon” lines carry arrows), butl and A are equivalent, as indices can be raised an
lowered by the Cartan-Killing forng;; = tr (TjTj). The Cartan canonical basis
D = ¢H; + ¢, E, + €, E_, is an example of a non-hermitian choice. Here we
shall always assume that are chosen hermitian.

45 LIE ALGEBRA
As the simplest example of computation of the generators of infinitesimal transfor-

mations acting on spaces other than the defining space, consider the adjoint rep.
Using @.39 on theV @ V' — A adjoint rep Clebsch-Gordan coefficients.(
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generatord;), we obtain

L - - (4.40)

(To)g = (T1)e(Te)(T3)5 — (To)a(Ty)e(Te)s -

Our convention is always to assume that the generdiptsave been chosen
hermitian. That means thaf in the expansion4.30 is real; A is a real vector
space, there is no distinction between upper and lower indices, and there is no need
for arrows on the adjoint rep lined.6). However, the arrow on the adjoint rep
generator4.40 is necessary to define correctly the overall sign. If we interchange
the two legs, the right-hand side changes sign

i = - /l\ (4.42)

(the generators for real reps are always antisymmetric). This arrow has no absolute
meaning; its direction idefinedoy (4.40. Actually, as the right-hand side of.40

is antisymmetric under interchange of any two legs, it is convenient to replace the
arrow in the vertex by a more symmetric symbol, such as a dot:

R e Ry}

(T jk = ZCZJk = tr THT Tk7 (442)

and replace the adjoint rep generat@r$),; by the fully antisymmetric struc-
ture constantsCj;,. The factori ensures their reality (in the case of hermitian
generatorsl;), and we keep track of the overall signs by always reading indices
counterclockwisaround a vertex

— iCijp = (4.43)

i

A_ : Jl (@40

As all other clebsches, the generators must satisfy the invariance conditia®s (

¢ ¢
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Redrawing this a little and replacing the adjoint rep generatiofg)by the structure
constants, we find that the generators obe\libaalgebracommutation relation

- XX

TZT] TJTZ —ZCZJka . (445)

In other words, the Lie algebra is simply a statementthgahe generators of invari-
ance transformations, are themselves invariant tensors. The invariance condition for
structure constants;;y, is likewise

Rewriting this with the dot-vertexd(42, we obtain

AL

This is the Lie algebra commutator for the adjoint rep generators, known as the
Jacobi relationfor the structure constants

Oijmc’mk’l - Cljmcmki - Cimlekm . (447)

Hence, the Jacobi relation is also an invariance statement, this time the statement
that the structure constants are invariant tensors.

Sign convention for C;;;,. A word of caution about usingh(49: vertexC};y, is
an oriented vertex. If the arrows are reversed (matri¢e$; multiplied in reverse
order), the right-hand side gets an overall minus sign.

4.6 OTHER FORMSOF LIE ALGEBRA COMMUTATORS

Note that in our calculations we never need explicit generators; we use instead the
projection operators for the adjoint rep. For rethey have the form

LN _
(PA)b?a_ }'C a,b—1,2,...,n
a a

a,B=1,...,dy. (4.48)

The invariance condition for a projection operator is

PR

Contracting with(7;)¢ and defining[d, x d,] matrices(T2)? = (Pa)¢,2, we
obtain

[Ty, Ta] = (Pa)y, eTq — TE(Pa)ysa
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a bc d

\IJ\IJ_%:W_\ZIM. (4.50)
ALA LA AN A LA A A

This is a common way of stating the Lie algebra conditions for the generators in
an arbitrary rep\. For example, fof/(n) the adjoint projection operator is simply

a unit matrix (any hermitian matrix is a generator of unitary transformation, cf.
chapter9), and the right-hand side of (50 is given by

U(n),SU(n) : [T, T = 6,13 — TE6G . (4.51)
Another example is given by the orthogonal groups. The generators of rotations
are antisymmetric matrices, and the adjoint projection operator antisymmetrizes
generator indices:
) 1 9acTva — gadThe
SO(?’L) ' [Tab7Tc ] B 2 { _gbcTad + gdeac} ' (452)
Apart from the normalization convention, these are the familiar Lorentz group
commutation relations (we shall return to this in chagt@r

4.7 IRRELEVANCY OF CLEBSCHES

As was emphasized in sedt2, an explicit choice of clebsches is highly arbitrary; it
corresponds to a particular coordinatization ofdRedimensional subspadé,. For
computational purposes clebsches are largely irrelevant. Nothing that a physicist
wants to compute depends on an explicit coordinatization. For example, in QCD the
physically interesting objects are color singlets, and all color indices are summed
over: one needs only an expression for the projection operatct9,(not for the

C\’s separately.

Again, a nice example is the Lie algebra generdtor&xplicit matrices are often
constructed (Gell-Mann; matrices, Cartan’s canonical weights); however, in any
singlet they always appear summed over the adjoint rep indices, A®B). (The
summed combination of clebsches is just the adjoint rep projection operator, a very
simple object compared with explidt matrices P is typically a combination of
a few Kronecker deltas), and much simpler to use in explicit evaluations. As we
shall show by many examples, all rep dimensions, casiretts, are computable
once the projection operators for the reps involved are known. Explicit clebsches
are superfluous from the computational point of view; we use them chiefly to state
general theorems without recourse to any explicit realizations.

However, if one has to compute non-invariant quantities, such as subgroup em-
beddings, explicit clebsches might be very useful. Gell-Manij [nvented \;
matrices in order to embefU(2) of isospin into.SU(3) of the eightfold way.
Cartan’s canonical form for generators, summarized by Dynkin labels of a rep, ta-
ble 7.7, is a very powerful tool in the study of symmetry breaking chairg]. The
same can be achieved with decomposition by invariant matrices (a nonvanishing
expectation value for a direction in the defining space defines the little group of
transformations in the remaining directions), but the tensorial technology in this
context is underdeveloped compared to the canonical methods.
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4.8 A BRIEF HISTORY OF BIRDTRACKS

In this monograph well developed conventional subjects - symmetric group, Lie al-
gebras (and, to a lesser extent, continuous Lie groups) - are presented in a somewhat
unconventional way, in a flavor of diagrammatic notation that | refer to as “bird-
tracks". Similar diagrammatic notations have been invented many times before, and
continue to be invented within new research areas.

It is quite likely that since Sophus Lie’s days many have doodled birtracks in
private without publishing them, partially out of sense of gravitas and no insignificant
part because preparing these doodles for publications is even today a painful thing.
| have seen unpublished 1960’s course notes of J.G. Belinfahtesfy much like
the birtracks drawn here, and there are surely many other such doodles lost in the
mists of time.

The methods used here come down to us along two distinct lineages, one that that
can be traced to Wigner, and the other to Feynman.

Wigner’s 1930’s theory, elegantly presented in his group theory monogragh [
is still the best book on what physics is to be extracted from symmetries, be it
atomic, nuclear, statistical, many-body or particle physics: all physical predictions
(“spectroscopic levels”) are expressed in terms of Wigrsar'g coefficients, which
can be evaluated by means of recursive or combinatorial algorithms. As explained
here in chaptes, decompositionq.8) of tensor products into irreducible repsimplies
that any invariant number characterizing physical system with a given symmetry
corresponds to one or several “vacuum bubbles”, trivalent graphs (a graph in which
every vertex joins three links), such as those listed in tatle

Since 1930’s much of the group-theoretical work on atomic and nuclear physics
had focused on explicit construction of Clebsch-Gordan coefficients for the rotation
group -SO(2), SU(2). The first paper recasting Wigner theory in graphical form
appears to be a 1956 paper by I.B. Levinstoi], further developed in the influental
1960 monograph by A. P. Yutsis (later A. Jucys), |. Levinson and V. Vandgag [
published in English in 1962 (see also refs,[14]). The most recent contribution
to this tradition, a very stimulating book by G. E. Stedmanq covers a broad
range of applications, including the methods introduced in the first version of present
monograph45].

The main drawback of such diagrammatic notations is lack of standardization,
especially in the case of Clebsch-Gordan coefficients. In addition, the diagrammatic
notations designed for atomic and nuclear spectroscopy are complicated by various
phase conventions.

If diagrammatic notation is to succeed, it need be not only precise, but also beauti-
ful. Itis in this sense that this monograph belongs to the tradition of R.P. Feynman,
whose sketches of the very first “Feynman diagrams” in his fundamental 1949
Q.E.D. paper§6] are beautiful to behold. Similarly, R. Penrosel'§P, 133 way of
drawing symmetrizers and antisymmetrizers, adopted here in chipsembued
with a very Penrose aestethics, and even though the book is in black and white, one
knows that he had drawn them in color. (Penrose, however, credits Alikerith
introducing this notation in 1939).

In introducing birtrack notation in 1975 | was inspired by “Feynman diagrams”
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and the elegance of Penrose’s binarsy. | liked G. 't Hooft [86] 1974 double-

line notation forU (n) gluon group-theory weights, and have introduced analogous
notation forSU (n), SO(n) andSp(n) in my 1976 paperd6]. The challenge was

to do the same for the exceptional Lie algebras, and | suce&ggakcept forFs
which came later.

In quantum groups literature graphs composed of vertit€®)(are called triva-
lent. The Jacobi relatiomt(46) in diagrammatic form was publishedd] in 1976;
though it seems surprising, | have not seen it in earlier literature. This set of dia-
grams has since been given moniker IHX by D. Bar-Natgn [t's invention has
been credited by N. Habeggéer]] to Morita [196, 197], and by A.M. Cohen and
R. de Man P9 to El Houari [60] (who, in turn, does refer to ref3f]). Somewhat
more mysteriously, in recent literature the birdtracks version of the Lie algebra
commutator 4.45 appears to go under pseudonym "the STU relation".

So why call this “birdtracks” and not “Feynman diagrams”? The difference is
that here diagrams are not a memonic device, an aid in writing donw an integral
that is to be evaluated by other techniques. In our applications, explicit construc-
tion of clebsches would be superfluous, and we need no phase conventions. Here
“birdtracks” are everything - unlike “Feynman diagrams”, here all calculations are
carried out in terms of birtracks, from start to finish. Left behind are blackboards
and pages of squiggles of kind that made Bernice Durand exclaim: “What are these
birdtracks!?” and thus give them the name.
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Recouplings

Clebsches discussed in setR project a tensor iiv?” @ V¢ onto a subspack. In

practice one usually reduces a tensor step by step, decomposing a 2-particle state at
each step. While there is some arbitrariness in the order in which these reductions
are carried out, the final result is invariant and highly elegant: any group-theoretical
invariant quantity can be expressed in terms of Wigngrcéefficients.

5.1 COUPLINGSAND RECOUPLINGS

We denote the clebsches forz v — A by

u

< —— ——

A - A (5.1)
\Y

Here A, u, v are rep labels, and the corresponding tensor indices are suppressed.
Furthermore, ifu and v are irreducible reps, the same clebsches can be used to
projecty ® A — v

dy
Pv a 5 (52)
andv @ A — [
u
d
p= . (5.3)
A

A
Here the normalization factors come fraf® = P condition. In order to draw the
projection operators in a more symmetric way, we replace clebsches by 3-vertices:

u

A 1 Y
= — . (5.4)
A\ a)\ v

In this definition one has to keep track of the ordering of the lines around the vertex.
If in some context the birdtracks look better with two legs interchanged, one can
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L_/{ - LQ”( (5.5)

While all sensible clebsches are normalized by the orthonormality reldtion (
in practice no two authors ever use the same normalization for 3-vertices (in other
guises known as 3-coefficients, Gell-Manm\ matrices, Cartan roots, Dirag
matricesgetc etd). For this reason we shall usually not fix the normalization

u
A o A g @
—«O—«E =ay—<—, a)= v, (5.6)
dy

\Y

leaving the reader the option of substituting his favorite choice (suezh:’;ts% if
the 3-vertex stands for GeII-Margm, eto).

To streamline the discussion, we shall drop the arrows and most of the rep labels
in the remainder of this chapter - they can always easily be reinstated.

The above three projection operators now take a more symmetric form:

use Yutsis’ notation[65

1 H
Py=— A
ax v
\Y
1
b= *>L<
a, N
1 A
P,=—3" . (5.7)
ay

u
In terms of 3-vertices, the completeness relatibi §) is

u
B d A
=Y i (5.8)
A @ \
\Y
Any tensor can be decomposed by successive applications of the completeness
relation:

— v >AC 1 1R}
—— ) o
1112
D D\ Gl (5.9)
ay ay a,

Hence, if we know clebsches for® p — v, we can also construct clebsches for
A@u®r®...— p. However, there is no unique way of building up the clebsches;
the above state can equally well be reduced by a different coupling scheme

= 111D (5.10)
JE— ax ay a, u ' '

PWINZ
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Consider now a process in which a particle in the gepteracts with a particle
in the repr by exchanging a particle in the rep

o—p—H

w (5.11)
p=——b

Thefinal particles are inrepsands. To evaluate the contribution of this exchange to

the spectroscopic levels of the- v particles system, we insert the Clebsch-Gordan

series
——u
e * >—®—< (5.12)
p—t—y A

By assumption\ is irredumble, SO we have a recoupling relation between the
exchanges in¢” and “t channels”™

I ZdA‘®p>—< (5.13)

We shall refer to@ as 34 coefficients anc@ as 64 coefficients, committing
ourselves to no particular normalization convention.

In atomic physics it is customary to absc@ into the 3-vertex and define a;3-
symbol [L35 15§

<2 g z):(—1)W\/:@ A—{. (5.14)

Herea = 1,2,...,d,, etqg are indices)\, i, v rep labels, and the phase con-
vention. Fixing a phase convention is a waste of time, as the phases cancel in
summed-over quantities. All the ugly square roots, one remembers from quantum

mechanics, come from stickir\ge into 3-j symbols. Wigner5d 6-;j symbols
are related to our g-coefficientdy

o p
E —
w p o
(OB
A P o P
The name3n — j coefficient comes from atomic physics, where a recoupling
involves3n angular momentg , jo, . . . , j3n-

Most of the textbook symmetries of and relations betwegsymbols are obvious
from looking at the corresponding diagrams; others follow quickly from complete-
ness relations.

If we know the necessary £s, we can compute the level splittings due to single

particle exchanges. Inthe next section we shall show that a far stronger claim can be
made: given the g-coefficients, we can compuédl multiparticle matrix elements.

(5.15)
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Skeletons Vertex Self-energy Tota
insertions insertions number

1-j O 1

1
2
5

Table 5.1 Topologically distinct types of Wign#-;j coefficients, enumerated by brute force
(drawing all possible graphs, eliminated the topologically equivalent ones by hand).
Lines meeting in any 3-vertex correspond to any 3 irreducible representations with
a non-vanishing Clebsch-Gordan coefficient, so in general these graphs cannot be
reduced to simpler graphs by means of such as the Lie algélsig and Jacobi
identity (4.46).

5.2 WIGNER 3n-j COEFFICIENTS

An arbitrary higher order contribution to a 2-particle scattering process will give
a complicated matrix element. The corresponding energy levels, cross-sections,
etc are expressed in terms of scalars obtained by contracting all tensor indices;
diagrammatically they look like “vacuum bubbles”, wisw internal lines. The
topologically distinct vacuum bubbles in low orders are given in table

In group-theoretic literature, these diagrams are calledg symbols, and are
studied in considerable detail. Fortunately, &my;j symbol which contains as a
sub-diagram a loop with, let us say, seven vertices
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Replace the dotted pair of vertices by the cross-channel Suif)y

-, B
06

Now the loop has six vertices. Repeating the replacement for the next pair of
vertices, we obtain a loop of length five:

y 1D B 61
0066

Repeating this process we can eliminate the loop altogether, producing 5-vertex-
trees times bunches of Beoefficients. In this way we have expressed the original
3n-j coefficients in terms o8(n-1)-j coefficients and-j coefficients. Repeating

the process for thg(n-1)-j coefficients, we eventually arrive at the result that

Bn-j)=>Y_ (products o@) : (5.18)

5.3 WIGNER-ECKART THEOREM

(5.16)

For concreteness, consider an arbitrary invariant tensor with four indices:

u &)
vV op

wherep, v, p andw are rep labels, and indices and line arrows are suppressed. Now
insert repeatedly the completeness relat@B)(to obtain

1
SRz SR
Py
op an0s

oL a

In the last line we have used the orthonormality of prOJectlon operators - adip) (
or (5.23.

P||1

:pnq
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In this way any invariant tensor can be reduced to a sum over clebsches (“kine-
matics”) weighted by “reduced matrix elements”:

<T >.= Q (5.21)
&

This theorem has many names, depending on how the indices are groufped. If
a vector, then only the 1-dimensional reps (singlets) contribute

singlet
T,= > . (5.22)
A H

a
If T"is a matrix, and the reps, i are irreducible, the theorem is called Schur’s
Lemma (for an irreducible rep an invariant matrix is either zero, or proportional to
the unit matrix):

1
Tl =Mt = 7 @] ——,. (5.23)
1

If T"is an “invariant tensor operator”, then the theorem is called the Wigner - Eckart
theorem [58 58:

A i A
p
(T7)b = a L~ :" b= i 4—63—«[:
va AU v
P

IJ )\
- -“<< (5.24)
v
O,

(assuming that: appears only once iA ® u Kronecker product). Il has many
indices, as in our original examplb.(9, the theorem is ascribed to Yutsis, Levin-
son and Vanagas.f5.  The content of all these theorems is that they reduce
spectroscopic calculations to evaluation of “vacuum bubbles” or “reduced matrix
elements” §.21).

The rectangular matriceg” )% from (3.24) do not look very much like the
clebsches from the quantum mechanics textbooks; neither does the Wigner-Eckart
theorem in its birdtrack versiorb229. The difference is merely a difference of
notation. In the bra-ket formalism, a clebsch far® Ao — )\ is written as

A Lem
m _‘_@ C=< Mo Am| Ay gy > (5.25)
mZ

Representing th@l, x d,] rep of a group element diagrammatically by a black
triangle

D}y, i (9) = m—4—m, (5.26)
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we can write the Clebsch-Gordan serigsig) as

A pr— +
+ T —— e
Dr);zllm/l (g)Djnzgm’z (g) = Z < Alml)\gm2|)\1>\25\7h > D?éﬂhl (g) < )\1)\25\T7L1|)\1m11)\2m12 >

X,

An “invariant tensor operator” can be written as

m
A
< Aoma|TA Mymy > = mzh«&:ml. (5.27)
1

In the bra-ket formalism, the Wigner-Eckart theoresd) is written as
< /\2m2|T£‘l\/\1m1 >=< )\/\1/\2m2|/\m/\1m1 > T()\, /\1/\2) R (528)

where the reduced matrix element is given by

1
T()\, )\1)\2) = a Z < )\n/\lnl\)\)\l)\gnQ >< /\2’17,2‘T7i\|>\1n1 >
2 ni,n2,n

A

1

A

2

We do not find the bra-ket formalism convenient for the group-theoretic calculations
that will be discussed here.

There is a natural hierarchy to invariance groups, hinted at in 8egtthat
can perhaps already be grasped at this stage. Suppose we have constructed the
invariance groud-; which preserves primitive$(36). Adding a new primitive, let
us say a quartic invariant, means that we have imposed a new constraint; only those
transformations ofy; which also preserve the additional primitive constitGte
the invariance group of—, /k, X Hence,G> is a subgroup of7;, G> C G;.
Suppose now that you think that the primitiveness assumption is too strong, and
that some quatrtic invariant, let us s&.34), cannotbe reduced to a sum of tree
invariants 8.39), ie. it is of form

= >< + (rest of 3.39)

whereX is a new primitive, not included in the original list of primitives. By
the above argument;, C G4. If G; does not exist (the invariant relations are so
stringent that there is no space on which they can be realized).
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Chapter Six

Permutations

The simplest example of invariant tensors is the products of Kronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the
symmetric grougs,,, the group of permutations gfobjects, enters into the theory

of tensor reps. In this chapter, we introduce birdtracks notation for permutations,
symmetrizations and antisymmetrizations and collect a few results which will be
useful later on. These are the (anti)symmetrization expansion fornmtule3 é&nd
(6.19, Levi-Civita tensor relationsg(28 and 6.31), the characteristic equations
(6.57) and the invariance condition6.65 and 6.58).

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operation, and we can represent it
by a[d x d] matrix:

B _ _aiaz2..0q d,...d; __
Oa = O0p.b, rcqcocs — 0 (6.1)

where(. ..), stands for the desired permutation of indices. As the covariant and
contravariant indices have to be permuted separately, it is sufficient to consider
permutations of purely covariant tensors.

For 2-index tensors, there are two permutations

. . —_—
identity: 1,,° = 626¢ =
———
flip: (12100, = 5507 = > (6.2)
For 3-index tensors, there are six permutations
bsbab by sb sb ‘
lajasas, 2 :511115@225(1:; = €
——
0(12)a1a2a37b3b2b1 :52215212522 = ><
——
——

7 >
0(123) = 52
0(132) = % (6.3)
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Subscripts refer to the standard cycle notation. (In the above, and for the remainder
of this chapter, we shall usually omit the arrows on the Kronecker delta lines.)
The symmetric sum of all permutations

Sala2map7bp<..bzb1 — p {51)1 51)2 ) 5bp + 5b1 5b2 . .522 4. }

a1 as az - ai
1

+><+%+} (6.4)

yields the symmetrization operat6t In birdtrack notation, a white bar drawn
acros lines will always denote symmetrization of the lines crossed. Fagiar
has been introduced in order thfasatisfies the projection operator normalization

[

A subset of indices, as, ... aq, ¢ < p can be symmetrized by symmetrization
matrix Si2.. 4

by...bg...bab
(512...q)a1a2 aq Sy proPar 2Ol —

o {5b15b2 I T +...}5bq“ -

a1 ”as ag+1

1
- 2
SlQ...qu:Efq. (6.6)

Overall symmetrization also symmetrizes any subset of indices:
SS12..4=195

(6.7)

Any permutation has eigenvalieon the symmetric tensor space:
cS=S

EEE

Diagrammatically this means that legs can be crossed and un-crossed at will.
The definition 6.4) of the symmetrization operator as the sum opajpermuta-
tions is inconvenient for explicit calculations - a recursive definition is more useful:

1
by...bab b by...b b bp...b
S(uaz...apa Pl = — {6aisa2.‘.ap7 b2 +6a125a1a3...ap7 AR }

S_

==

(1 +0@1) +0@E21) + T O0p. 521)) S23..p

EETEE) e

’BI»—ﬂ ’UI»—*%
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which involves onlyp terms. This equation says, that if we start with the first index,
we end up either with the first index, or the second index and so on. The remaining
indices are fully symmetric. Multiplying byss . .. p from the left, we obtain an
even more compact recursion relation with two terms only:

%E = % (iE +(p - l)ﬁ) : (6.10)

As a simple application, consider computation of a contraction of a single pair of

indices:
) 1 O
Pe= =- i:E +(p—1)% :
1 p
p H
—1
Sapap_l...al 7b1--<bp71ap = %Sap_l...alf)l.“bpil N (6'11)

For a contraction irfp — k) pairs of indices, we have

_(n+p—1)%! (6.12)

Copln+k—1) k— -

The trace of the symmetrization operator yields the number of independent compo-
nents of fully symmetric tensors:

_ _ ~n+p—1 _(n+p-—1)
dstrS@p@M. (6.13)

For example, for 2-index symmetric tensors

dg = @ (6.14)

6.2 ANTISYMMETRIZATION
The alternating sum of all permutations

1
Aalaz...ap-,bp“'bel — 17 {5b1 5b2 o 52;; _ 5b1 5!)2 o 521; + .. }

ai “az2 az - ai

a4 - %;%{__x+%—} (6.15)
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yields the antisymmetrization projection operattr In birdtrack notation, anti-
symmetrization op lines will always be denoted by a black bar drawn across the
lines. As in the previous section

-
i

SA=0

f —
= e

A transposition has eigenvaluel on the antisymmetric tensor space

(6.16)

%-HH-H

and in addition

zz+1 A_

tE o

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of—1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often com-
putationally convenient

;’{EE@”ﬁ} (6.19)

This is useful for computing contractions such as

% =
p-1
= S =
l
bp_ra

Jrl
aap 1 au i ap 1e..a1s brobp1 (6.20)

The number of independent components of fully antisymmetric tensors is given by

— 1n— 2
da=trA = _r-ptin-pr2 n
P p—1 1

+’1 , m=p
- (n—p)! . (6.21)
0, n<p
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For example, for 2-index antisymmetric tensors the number of independent compo-

nents is
-1
da = % : (6.22)

Tracing(p — k) pairs of indices yields

_ Rn= k)t : (6.23)

The antisymmetrization tensot,,.,...,’*2** has non-vanishing components,
only if all lower (or upper) indices differ from each other. If the defining dimension
is smaller than the number of indices, the tenétias no non-vanishing components

1
ZEE =0 if p>n. (6.24)
p

This identity implies that fop > n, not all combinations gf Kronecker deltas are
linearly independent. A typical relation is the=n + 1 case

A

For example, forn = 2 we have
=§1oc6e — 65c08 — 67 6c6% 4 61 5c0% + 87 6c68 — 67656 .

n=2: =

bYa"c b(a

6.3 LEVI-CIVITA TENSOR

An antisymmetric tensor, with indices in defining dimension, has only one
independent component,{ = 1 by (6.21)). The clebsches(15 are in this case
proportional to the Levi-Civita tensor

a
(CA)l 7a,,,...a2al :Cean...agal — Eaz
al
(CA)maz...a,,, ’1206‘11“2-"“" =" : I (627)
an

with €'2+" = €5, = 1. This diagrammatic notation for the Levi-Civita ten-
sor was introduced by Penrose3}]. The normalization factor€’ are physically
irrelevant. They adjust the phase and the overall normalization in order that the
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Levi-Civita tensors satisfy the projection operatr and orthonormality4.17)
conditions:

1
ﬁ€b1b2'~bn€

P e

€d1az..-an :(511 -1

%: 1. (6.29)

o z’n(n—l)/Q (6 30)
o Val '
The phase factor arises from the hermiticity conditiéri @) for clebsches (remem-
ber that indices are always read in the counterclockwise order around a diagram)

A E

—¢

.— _ )
v "€ajas..a, =t "€a,..asa; -

a1a2...an __ Ap...a201

Ap by by s

NI €aras...an

With our conventions

Transposing the indices
(71)n(n71)/2

€aras...a, — “€azai..ap, — -+ = €a,,...azay »

yields¢ = n(n — 1)/2. The factorl/v/n! is needed for the projection operator
normalization 8.47).
Givenn dimensions we cannot label more thamdices, so Levi-Civita tensors

satisfy
= m . (6.31)

1234

Lt R

0=0%p. — 6€qe + 0%y . (6.32)

This is actually the same as the completeness relafidcif)( as can be seen by
contracting 6.32) with ¢.; and using

n=2: Elj :45‘_:%—(—
5l

For example, for

be
€ac€ =0,

(6.33)
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This relation is one of a series of relations obtained by contracting indices in the
completeness relatios 28 and substituting®.23):

Ao Qg ] Qe ] ai...ay
€an...ansibi...bi € 1@t = (p — VR Ay, py 0

- w flf : (6.34)
Such identities are familiar from relativistic calculatians= 4):
€abeac™?!e = 5777
€abeac™c =255
Gabcdeabce _ 652
abea€?? =24, (6.35)
where the generalized Kronecker delta is defined by
iéblbg...bp _ Aulag...a,p 7b,,...bzbl ) (6.36)

|Yaraz...ap

6.4 DETERMINANTS

Consider arjn? xn?] matrix M, ” defined by a direct product ¢f x n] matrices
M?
Mo =M, ay..a,, 72" = MEPMPE2 Ml

—— ¢ ———

M=" M ¢ ="+%, (6.37)
— —,  ———
where
M? = e (6.38)

The trace of the antisymmetric projection/of, ? is given by
tr ) AM = Agpe. a0, "V MEMY, . MG

(6.39)

The subscripp ontr (. ..) distinguishes the traces ¢n” x n?] matricesM”
from the[n x n] matrix tracetr M. To derive arecursive evaluation rule for, AM
use 6.19 to obtain

—_——
_5 —(p— . .
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Iteration yields

MP
€ € s o G
- ) )+ = Q F 6.41
© o
{>
{> {>
> >

Contracting with)/?, we obtain

tr AM_— —D)F (tr ,_ AM) tr M* . (6.42)
p
k=1

This formula enables us to compute recursivelyallAM as polynomials in traces
of powers ofM:

troAM =1,  tr AM = C) = tr M (6.43)
1
-5 (00-).
trgA]W:% {(tr M)?* — tr M?} | (6.44)

DD
O

1
trg AM = 3 {(tr M)? — 3(tr M) (tr M?) + 2tr M®} (6.45)

D Qo
R O)e)

1
traAM = - {(tr M)* — 6(tr M)*tr M>

D

W =

+3(tr M?)* + 8tr MPtr M — 6tr M*} . (6.46)
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Forp = n (M? are[n x n] matrices) the antisymmetrized trace is the determinant
detM = tr,AM = Agjay...a,,"" 20 My M2 M. (6.47)

The coefficients in the above expansions are simple combinatoric numbers. A
general term for(tr M%)« (tr M*2)%, with o, loops of length?;, a; loops of
length/, and so on, is divided by the number of ways in which this pattern may be
obtained:

001052 A anlas! L) (6.48)

6.5 CHARACTERISTIC EQUATIONS

We have noted that the dimension of the antisymmetric tensor space is zero in
n < p. This is rather obvious; antisymmetrization allows each label to be used at

most once, and it is impossible to label more legs than there are labels. In terms of
the antisymmetrization operator this is given by the identity

A=0 if p>n. (6.49)

This trivial identity has an important consequence: it guarantees thdhany]
matrix satisfies a characteristic (or Hamilton-Cayley) equation. pake:+ 1 and
contract withM? n index pairs ofA:

b ,...bzb]d al ag Ap
Acalagu.an7 " Mbl ‘Z\/[bz o e Mbn —0

c d

—0. (6.50)

'A TT

We have already expanded thist41). Forp = n+ 1 we obtain theharacteristic
equation

O:En:(—l)k(trn,kAM)Mk, (6.51)
k=0
=M" — (tr M)M"™ ! + (trAM) M"™ 2 — ...+ (—1)" (detM) 1.

6.6 FULLY (ANTI)SYMMETRIC TENSORS

As we shall often use fully symmetric and antisymmetric tensors, it is convenient
to introduce special birdtrack symbols for them. We shall denote agyttymetric
tensor by a small circle (white dot)

dabc...f = m . (652)

abec.d
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A symmetric tensotl,pe...q = dpac...d = dach...q = - . . Satisfies
Sd=d

@m 659

If this tensor is also an invariant tensor, the invariance condii@&H( can be written

as
BB D
=p Hjé (p = number of indices) (6.54)

Hence, the invariance condition for symmetric tensors is

0= . (6.55)

The fully antisymmetridensors withodd numbers of legs will be denoted by
black dots

Jabe..a = N (6.56)
abc.d
If the number of legs igven an antisymmetric tensor anticyclic
fabc...d = _fbc...da7 (657)

and the birdtrack notation must distinguish the firstleg. A black dotis inadequate for
the purpose. A bar, as for the Levi-Civita tens®i(/), a semicircle (the symplectic
wart introduced below inl2.3) or a similar notation fixes the problem.

For antisymmetric tensors, the invariance condition can be stated compactly as

0= . (6.58)
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Casimir operators

The construction of invariance groups, developed elsewhere in this monograph, is
self-contained, and none of the material covered in this chapter is necessary for
understanding the remainder of the monograph. We have argued irb skitiat

all relevant group-theoretic numbers are given by vacuum bubbles (reduced matrix
elements3n-j coefficients,etd, and we have described the algorithms for their
evaluation. That is all that is really needed in applications.

However, one often wants to cross-check one’s calculation against the existing lit-
erature. In this chapter we discuss why and how one introduces casimirs (or Dynkin
indices), we construct independent Casimir operators for the classical groups, and
finally we compile values of a few frequently used casimirs.

Our approach emphasizes the role of primitive invariants in constructing reps
of Lie groups. Given a list of primitives, we present a systematic algorithm for
constructing invariant matrice®/; and the associated projection operat&rg9.

In the canonical, Cartan-Killing approach one faces a somewhat different prob-
lem. Instead of the primitives, one is given the generaigrexplicitly and no
other invariants. Hence, the invariant matricds can be constructed only from
contractions of generators; typical examples are matrices

(&)

My = Lt M4ﬁi, (7.1)

whereo, 1 could be any reps, reducible or irreducible. Such invariant matrices are
calledCasimir operators

What is a minimal set of Casimir operators, sufficient to reduce any rep to its
irreducible subspaces? (Such bases can be useful, as the correspo@dsimir
operators uniquely label each irreducible rep by their eigenvalues,, . . . A,.).

The invariance condition for any invariant matrx 29 is

o 22
N

H
so all Casimir operators commute

MMy = [ ; = ; () = MyMs,,
u H

and, according to sec8.5, can be used to simultaneously decompose theurep
If My, M, ... have been used in the construction of projection operafuH)(
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any matrix polynomialf (M7, M- .. .) takes valugf (A1, Ao, .. .) on the irreducible
subspace projected iy, so polynomials inV/; induce no further decompositions.
Hence, it is sufficient to determine the finite numberidf's which form a poly-
nomial basis for all Casimir operatorg.{). Furthermore, as we show in the next
section, it is sufficient to restrict the consideration to the symmetrized casimirs.
This observation enables us to explicitly construct, in se&. a set of indepen-
dent casimirs for each classical group. Exceptional groups pose a more difficult
challenge.

7.1 CASIMIRSAND LIE ALGEBRA

There is no general agreement on a unique definition of a Casimir operator. We
could choose to call the trace of a productajenerators

tr (TLTJ ce 5 (72)

akth ordercasimir. With such definition

tI‘(T}Tz

would also be a casimir, independent of the first one. However, all tracéssof
which differ by a permutation of indices are related by Lie algebra. For example

= - . (7.3)

The last term involves @:-1)th order casimir and is antisymmetric in the indices.
Only the fully symmetrized traces

1
hij k= o S (LT Ty) = (7.4)

" perm

are not affected by the Lie algebra relations. Hence from now on, we shall use
the term “casimir” to denoteymmetrizetraces (ref. [ 16 follows the same usage,
for example). Any unsymmetrized trace(T;T; . .. T}) can be expressed in terms
of the symmetrized traces. For example, using the symmetric group identity (see

table9.1)
(Lt s

the Jacobi identity4.46), and thed; ;;, definition ©.79), we can express the trace of
four generators in any rep of any semi-simple Lie group in terms of the quartic and
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cubic casimirs:

1 1 1 1 1
— - Z - = - . (7.6
%*2 +3[X +2m+6 +6//’&\ (7.6)
In this way, an arbitrary:th order trace can be written as a sum over tree contrac-

tions of casimirs. The symmetrized casimirs4j are conveniently manipulated as
monomial coefficients:

tr Xk = hij”_mwixj e Ty (77)

For a rep\, X is a[dy x d)] matrix X = «,T;, wherez; is an arbitraryN-
dimensional vector. We shall also use a birdtrack notatioBd:

X) = ey = i X (7.8)

The symmetrizationq.4) is automatic

tr X+ = ( ) = Z 9%% = Z xixj...xp. (7.9)

ije--k
ij-k

7.2 INDEPENDENT CASIMIRS

Not all tr X* are independent. For-dimensional rep a typical relation relating
varioustr X* is the characteristic equatioB.61):

X" = (tr X)X — (tro X)X 72 + ...+ (detX). (7.10)

Scalar coefficientsr , X are polynomials intr X™, computed in sect.5. The
characteristic equation enables us to express¥@hy > n in terms of the matrix
powersX*, k < nandthe scalar coefficients X*, k < n. Ifagroup has afn x n|
dimensional rep, it has at mostindependent casimirs

000 o

corresponding tor X, tr X2, tr X3, ... tr X",

For a simple Lie group, the number of independent casimirs is calle@uttkef
the group and is always smaller thaythe dimension of the lowest dimensional rep.
For example, for all simple groupsT = 0, the first casimir is always identically
zero. For this reason, the rank®t/ (n) isn — 1, and the independent casimirs are

OO0 O
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The defining reps o6O(n), Sp(n), G2, Fi, E7 and E5 groups have invertible
bilinear invariantg,;, either symmetric or skew-symmetric. Insertisfg= g.,9"°
any place in atrace é@fgenerators, and moving the tenggy through the generators
by means of the invariance conditiohd(5, we can reverse the defining rep arrow:

Hence for the above groups, X* = 0 for k& odd, and all their casimirs are of even
order.

The odd and the even dimensional orthogonal groups differ in the orders of inde-
pendent casimirs. Far = 2r + 1, there are- independent casimirs

SO©2r + 1 9 Q Q (7.13)

Forn = 2r, a symmetric invariant can be formed by contracbfrrgefining reps
with a Levi-Civita tensor (the adjoint projection operatb® (13 is antisymmetric):

L) - (7.14)

tr X2 is not independent, as b§.@9), it is contained in the expansion 6f(z)?

(7.15)

Hence, ther independent casimirs for even dimensional orthogonal groups are:

O(2r) . (7.16)

\
HH H \
12(@2) 1 2 .r

For Sp(2r) there are no special relations, and thendependent casimirs are
trX%,O <l <

Sp(2r) : 9 Q Q (7.17)

T T
122r

The characteristic equatioi.(.0, by means of which we count the independent
casimirs, applies to the lowest dimensional rep of the group, and one might worry
that other reps might be characterized by further independent casimirs. The answer
is no; all casimirs can be expressed in terms of the defining repS®6n), Sp(n)
and SO(n) tensor reps this is obvious from the explicit form of the generators
in higher reps (see sed.4 and related results fa$p(n) and SO(n)); they are
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A, 2,3, ...,r+1 ~ SU((r+1)
B. 2,4,6, ..,2r ~ SO(2r+1)
C. 2,4,6, ...,2r ~  Sp(2r)
D, 2,4, ..,2r—2,r ~  SO(2r)
Ga 2,6
F, 2,6,8, 12
Es 2,5,6,8,9, 12
E; 2,6, 8,10, 12, 14, 18
Es 2,8, 12, 14, 18, 20, 24, 30

Table 7.1 Betti numbers for the simple Lie groups.

tensor products of the defining rep generators and Kronecker deltas, and a higher
rep casimir always reduces to sums of the defining rep casimirs, times polynomials
in n (see examples of se&.6).

For the exceptional groups, cubic and higher defining rep invariants enter, and
the situation is not so trivial. We shall show below, by explicit computation, that
tr X? = 0 for Eg andtr X* = c(tr X?2)? for all exceptional groups. We shall also
prove the reduction to th&"?- and6'"-order casimirs foiG, and partially prove
the reduction for other exceptional groups. The orders of all independent casimirs
are known P6] as the Betti numbers, listed here in tafla.

7.3 CASIMIR OPERATORS

Most physicists would not refer tar X* as a casimir. Casimir's?[j] quadratic
operator and its generalizationis3[] are [d,, x d,| matrices

A

(I,)h = y =T T (T - T,
b

12-p

(7.18)

We have shown in seci.2that all invariants are reducible 6g coefficients./,,’s
are particularly easy to express in term$¢s. Define

A

a —
M h = " afB=1,...,dy, ab=12....d,. (7.19)

a ——

Inserting the complete Clebsch-Gordan serie8)for A @ 1, we obtain

A A
Moo ad o 2 o)
M = = — ) 7.20
E::)WID‘C: 2 d, jﬁ{: (7.20)
P H HooH P Hou
The eigenvalues a¥f are Wigner'ssj coefficients §.15). Itis customary to express
theset;’s in terms of quadratic casimir operators by using the invariance condition
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(4.39
p p A P A p
—<—Q— = —éi ;—4— - 2—(—@-1— + —@4—
i f M
A
Co(p)—%— = Cy(\)—— — 2 C Oyl —— . (7.20)
u

This is an ancient formula familiar from quantum mechanics textbooks: if the total
angular momentum ig = L + S, then the cross-term - 5 = 3(J? — L? — §?).
In the present case we trace both sides to obtain

1 AN\ 1
a, =3 {Ca(p) — C2(A) — Ca(p)} (7.22)

p
The pth order casimir is thusl[L7]

(Ip)o = (MP)g0,

_irreduc, CQ(p)_C2()\)_CQ(M) P
R ( : ) &@&

If 11 is an irreducible rep, .23 yields

A A
e T
n TR dy ’
P

and theu rep eigenvalue of), is given by

5 (Cz(p) — Cy(\) — Cz(u)>pdp, (7.23)

2
p

Here the sum goes over allc A\ ® u, wherep, A andu are irreducible reps.
Another definition of the generalized Casimir operator, which is more in the spirit
of the previous section, uses the fully symmetrized trace:

A

T =Ny k(TTy ... Ty)Y. (7.24)
[ ]
0

We shall return to this definition in the next section.
7.4 DYNKIN INDICES

As we have seen so far, there are many ways of defining casimirs; in practice it
is usually quicker to directly evaluate a given birdtrack diagram than to relate it
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to standard casimirs. Still, it is good to have an established convention, if for no
other reason than to be able to cross-check one’s calculation against the tabulations
available in the literature.

Usually a rep is specified by its dimension. If the group has several inequivalent
reps with the same dimensions, further numbers are needed to uniquely determine
the rep. Specifying thBynkin index56],

fh = % — tr?gg; 7
tr (C;C5

usually (but not always) does the job. A Dynkinindex s easy to evaluate by birdtrack
methods. By the Lie algebrd @5, the defining rep Dynkin index is related t6 a
coefficient:

glgafN{@@}?i;@ (7.26)

The6y coeﬁicient@ = tr (T;T;1,T;) is evaluated by the usual birdtrack tricks.

(7.25)

For SU (n), for example

1 n?—1
OE O

The Dynkin index of a rep in the Clebsch-Gordan series forp 1 is related to
a6j coefficient by 7.22):

(1 A A
byfdp = b+ by d 257 - . (7.28)
)

We shall usually evaluate Dynkin indices by this relation. Another convenient
formula for evaluation of Dynkin indices for semi-simple groups is

tr )\XQ
T tr aX2’
An application of this formula is given in se&.6.

The form of the Dynkin index is motivated by a few simple considerations. First,
we want an invariant number, so we trace all indices. Second, we want a pure,
normalization independent number, so we take a ratio(C;C;) is the natural
normalization scale, as all groups have the adjoint rep. Furthermore, unlike the
Casimir operators7.18 which have single eigenvaluds(\) only for irreducible
reps, the Dynkin index is a pure number for both reducible and irreducible reps.
[Exercise: compute the Dynkin index foi(n).]

The above criteria lead to the Dynkin index as the unique group-theoretic scalar
corresponding to the quadratic Casimir operator. The choice of group- theoretic
scalars corresponding to higher casimirs is rather more arbitrary. Consider the

A (7.29)
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SO(3):

1l
/::
_|_
/
&
——

Gg:

Fy:

1
=
\
Wl
+
g
+
N
/
7
+
+
X

FEs:

FEr:

Es:

Table 7.2 Expansions of the adjoint rep quartic casimirs in terms of the defining rep for all
simple Lie algebras. The normalization7) is set toa = 1.
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SU(n): =2n + 6%:%
SO(n): = (n—28) +3[QF%
s

Sp(n): = (n+8) N +3
Gs: = %[g:’@e

Fy: = %[QF%I

Eg: = %[%:%

E7: =

Ex: =

Table 7.3 Reduction of adjoint quartic casimirs to the defining rep quartic casimirs for all
simple Lie algebras. The normalization$7) is set toa = 1.
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reductions ofl, for the adjoint reps, tabulated in table2. (The SU(n) was eval-
uated as an introductory example, s€c®; the remaining examples are evaluated
by inserting the appropriate adjoint projection operators, derived below).

Quartic casimirs contain quadratic bits, and in general, expansioh&\y in
terms of the defining rep will contain lower order casimirs. To construct the “pure
pth order casimirs, we introduce

NHM-8
m%ﬂx%% (720
Mg~
m%w@@mmq

FTTTTI
and fix the constantd, B, C, ... by requiring that these casimirs avghogonal

@é:o, @é:o, (7.31)

Now we can define thgeneralized Dynkin indicds.21] by

pOw =) = dp. DO = )

Lp
D(3>(u):®7 .., DP(u) = 2@ : (7.32)
37
For simplicity, we have taken here normalizatie{C;C;) = 1.

The generalized Dynkin indices are not particularly convenient or natural from
the computational point of view, but they do have some nice properties. For example
(as we shall show later on), the exceptional groups* = C(tr X?)? are singled
our byD® = 0.

If 1 is a Kronecker product of two repg, = A ® p, the generalized Dynkin

indices satisfy
O, 0.0,:0,0

DP () =D®P (N, +d\DP(p) >0, (7.33)
as the cross terms vanish by the orthonormality conditi@rl). Substituting the
completeness relatio® (), A ® p = >_ o, we obtain a family obum rulesfor the
generalized Dynkin indices:

> @ => D@ (o) = DP)(N)d, + d\D")(p). (7.34)
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Forp = 2 thisis a\ ® p = >_ o sum rule for Dynkin indices®.27)
Uadp +drly = Lo, (7.35)

useful in checking the correctness of Clebsch-Gordan decompositions.

7.5 QUADRATIC, CUBIC CASIMIRS

As the low-order Casimir operators appear so often in physics, it is useful to list
them and their relations.
Given two generator;, T; in [nxn] rep A, there are only two ways to form a

loop:
O L
If the A rep is irreducible, we defin€’r casimir as
—Q— =(Cp ——
(TTy);, = Crdy,. (7.36)
If the adjoint rep is irreducible, we define

tI‘TiTj :adij. (737)

Usually we take\ to be the defining rep and fix the overall normalization by taking
a = 1. For the adjoint rep (dimensiaN), we use notation

{}j = CiteCiige = Ca L (7.38)

Cr,a,C4, and/, the Dynkin index {.27), are related by tracing the above expres-
sions:

@ — nCp = Na = NCLL. (7.39)

While the Dynkin index is nhormalization independent, on&gf a or C'4 has to
be fixed by a convention. The cubic casimirs formed frbys andC;;;’s are (all
but one) reducible to the quadratic Casimir operators:

ey oo
n 2
)\ _Ca_, (7.41)

2
L (’;A* (7.42)
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This follows from the Lie algebrad(45

The one exception is the symmetrized third-order casimir

%d”'k:/KE%{ﬁIJFQ}' (7.43)

By (7.12) this vanishes for all groups whose defining rep is not complex. Thatleaves
behind onlySU(n),n > 3 andEs. As we shall show, in secl8.6 d;;; = 0 for
Eg, only SU (n) groups have non-vanishing cubic casimirs.

7.6 QUARTIC CASIMIRS

There is no unique definition of a quartic casimir. Any group-theoretic weight which
contains a trace of four generators

K:i (7.44)

can be called a quartic casimir. For example, 4-loop contribution t@)ié® ;

function

contains two quartic casimirs. This weight cannot be expressed as a function of
guadratic casimirs and has to be computed separately for each rep and each group.
For example, such quartic casimirs need to be evaluated for the purpose of classifi-
cation of grand unified theories T7], weak coupling expansions in lattice gauge
theories {3], and the classification of reps of simple Lie algebras].

However, not every birdtrack diagram, which contains a trace of four generators,
is a genuine quartic casimir. For example,

m (7.46)
O 7.7

and equal%acf‘ forasimple Lie algebra. However, if all loops contain four vertices
or more, Lie algebra cannot be used to reduce the diagram. For example

is reducible by 7.47) to
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s oY
N @ La(F)

SU(n) o i =) 2n
24\ (n—
So(m) | URE=AY ne8
n— 7L2— n
Sp(n) ( 214)((n’-’+:)+(4)+3) n+38

Normalization:—Of =

Table 7.5 Quartic Dynkin indices/ (32 for the defining and the adjoint reps of classical
groups. For the exceptional groups the quartic Dynkin indices vanish identically.

The second diagram is reducible, but the first one is not. Hence, at least one quartic
casimir from a family of quartic casimirs related by Lie algebra has to be evaluated
directly. For the classical groups this is a straightforward application of the birdtrack
reduction algorithms. For example, 8t/ (n) we worked this out in sec®.2.

The results listed in tablé.4 for the defining and adjoint reps of all simple Lie
groups. In table/.5we have used the results of talilel to compute the quartic
Dynkin indices {.32. These computations were carried out by the methods which
will be developed in the remainder of this monograph.

7.7 SUNDRY RELATIONSBETWEEN QUARTIC CASIMIRS

In evaluations of group theory weights the following reduction of a 2-adjoint, 2-
defining indices quartic casimir is often very convenient:

M, 4 up %:ﬁ , (7.49)

where the constants A and B are listed in table
For the exceptional groups, the calculation of quartic casimirs is very simple. As
mentioned above, the exceptional groups have no genuine quartic casimirs, as

tr X4 :b(trX2)2

:b%%. (7.50)
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%
a
b

SU(n) | n? -1 2n -1 ‘ —a? ~
SO(n) @ (n—2) 3 —% ~ —szi%
n(n a? U
Spn) | M5 (n+2) 3 -5 —a
G (7) 14 4 0 —a ~ +§E
——
Fy(26) | 52 33— 1 a - + %ﬂf
Es(27) | 78 4— 8 —e - +QE
E7(56) | 133 — I o - +3¢ %:l%

Table 7.6 The dimensioiV of the adjoint rep, the quadratic casimir of the adjoint t¢p,
the vertex casimir',, and the quartic casimii7(49 for all simple Lie algebras.
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The constant is fixed by contracting w@\ U:

p— 3 1 ___ 3 (N _1ICa
~ N(N +2)a?  NN+2)\n 6a )

Hence, for the exceptional groups

1
N

% a |
1 25
N@Ci EREs 782

N +27
4

— = 7.
A12(N +2) (7:53)

Here the third relation follows from the second by the Lie algebra.
To facilitate such computations, We list a selection of relations between various

quartic casimirs (using normallzat|

) forirreducible reps
@ NOA a’ (7.54)

is non-vanishing only fo6U (n),n > 3.

% _N 24 (7.56)
% 6@ (7.57)

The cubic casimi
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1
= —(2CF +Cy)=——-— (7.58)
a n

1 5
N% gcj (7.59)
1 1, o 5
= = 5(CF +CpCy +C2). (7.60)

7.8 IDENTICALLY VANISHING TENSORS

There exists an interesting class of group theoretic weights which vidiistically.
Some examples are

JESIEN B B

<&

-
Ao, /&o, (7.63)
e J

=0, (7.61)

=0, (7.62)

=0. (7.64)

The above identities hold for any antisymmetric 3-index tensor; in particular, they
hold for the Lie algebra structure constaft$;,. They are proven by mapping a
diagram into itself by index transpositions. For example, interchange of the top and
bottom vertices in7.61) maps the diagram into itself, but with tie 1) factor.

From the Lie algebrad(45 it also follows that for any irreducible rep we have

35 —0, m:o. (7.65)

7.9 DYNKIN LABELS

It is standard to identify a rep of a simple group of rartky its Dynkin labels, a set
of r integers(a;as . . . a,.) assigned to the simple roots of the group by the Dynkin
diagrams. The Dynkin diagrams, tabie/, are the most concise summary of the
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Go

Fy

Eg

gk

1 2 3 45 67

SU(n+1)

SO(2n + 1)

Sp(2n)

SO(2n)

Table 7.7 Dynkin diagrams for the simple Lie groups.
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Cartan-Killing construction of semi-simple Lie algebras. We list them here only
to facilitate the identification of the reps and do not attempt to derive or explain
them. Dynkin’s canonical construction is described in Slansky’s revie#]

In this monograph, we emphasize the tensorial techniques for constructing reps.
However, in order to help the reader connect the two approaches, we will state the
correspondence between the tensor reps (identified by the Young tableaux) and the
canonical reps (identified by the Dynkin labels) for each group separately, in the
appropriate chapters.
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Chapter Eight

Group integrals

In this chapter we discuss evaluation of group integrals of form
/dgagag . .GSGY (8.1)

whereG? is the [nxn] defining matrix rep ofy € G. and the integration is over
the entire range of.. As always, we assume théf. is a compact Lie group,
andG? is unitary. Such integrals are of import for certain quantum field theory
calculations, and the chapter should probably be skipped by a reader not interested
in such applications.

The integral 8.1) is defined by two rules:

1. Normalization:

/ dg=1 (8.2)

2. How do we defing dgG? ? The action ofy € G. is to rotate a vectar,, into
/ ab
x, =G%x

— Y
Surface traced out by action Gf

for all possible group elements

The averaging smeaisin all directions, hence the second integration rule
/dng; =0, G is anon-trivial rep of g, (8.3)

simply states that the average of a vector is zero.

A rep is trivial if G = 1 for all group elementg. In this case no averaging is
taking place, and the first integration ruk22) applies.

What happens if we average a pair of vectorg? There is no reason why a
pair should average to zero; for example, we know thgt= Y~ z,z} = z,2°
is invariant (we are considering only unitary reps), so it cannot have a vanishing
average. Therefore, in general

/ dgGtGS #0. (8.4)

To getafeeling of what the right-hand side looks like, let us work out a few examples:
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8.1 GROUP INTEGRALSFOR ARBITRARY REPS

Let G® be the definingn xn] matrix rep ofSU (n). The defining rep is non-trivial,
so it averages to zero b$.Q). The first non-vanishing average is the integral over
G'. G'is the matrix rep of the action gfon the conjugate vector space, which we
write as 8.9

Gy = (G

As we shall soon have to face a lot of indices, we immediately resort to birdtracks.
In the birdtracks notation of seet.1

GZ:a—(—Q—(—m Gy =a—>—}——b. (8.5)

For G the arrows and the triangle point the same way, whiledotthey point the
opposite way. Unitarity7'G = 1 is given by

P = — e = ——— (8.6)
In this notation, theZGT integral to be evaluated is
a —<—}—d
/dg . (8.7)
b 3—f—-cC

AsintheSU (n) example of sec®.2, theV @ V tensors decompose into the singlet

and the adjoint rep
2O

1 1
0307 =~ 0007 + — (T1), (T1); - (8.8)

a c

We multiply (8.7) with the above decomposition of the identity. The unitarity
relation @.7) eliminates G’s from the singlet:

—4“‘_%) C+$C (8.9)

The generatorg; are invariant (seef(45)
(1) = Go.GY G (T (8.10)
whereG; is the adjoint N x N] matrix rep ofg € G.. Multiplying by G;;', we

obtain
j} = % (8.11)

Hence, the pai€>G' in the defining rep can be traded in for a single G in the adjoint

rep
:%} C*M (8.12)
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The adjoint repl;; is non-trivial, so it gets averaged to zero [8/3). Only the

singlet survives
— 1
[o—T-DC
n

1
/ dg GIGh = —6dsb . (8.13)
n

New letG be any irreducibléd x d] rep. Irreducibility means that any invariant
matrix A is proportional to; - otherwise one could usé to construct projection
operators of secB.4 and decompose thédimensional rep. As the only bilinear
type invariant if?, the Clebsch-Gordan series contains one and only one singlet

non—singlets

. d} C+ Z D:(: (8.14)

Only the singlet survives the group averaging, aBd ) is true for any[d x d]
irreduciblerep (withn — d). If we takeG2 andG* in inequivalent reps,, u (there
is no matrixK such thatG») = KGW K~ for anyg € G.), then there is no way
of forming a singlet, and

/ dgGNIGWA = if A L. (8.15)

What happens i7 is a reducible rep? In the compact index notation of se@t4
the group integral&.1) that we want to evaluate is given by

IP = / dgGP. (8.16)
A reducible rep can be expanded in a Clebsch-Gordan sérig3 (
1=>" Ci/dgGAC,\ . (8.17)
A

By the second integration rul&.@), all non-singlet reps average to zero, and one is
left with a sum over singlet projection operators

/dgG: Yo clan= > p. (8.18)

singlets singlets

Group integration amounts to projecting out all singlets in a given Kronecker prod-
uct. We now flesh out the logic that led & {8 with a few details. For concreteness,
consider the Clebsch-Gordan serigs3(for u x v = > X. Each clebsch

(Ca)he = :D—L i (8.19)

is an invariant tensor (seé.G&)'
_G“ G‘ G, Cl

D-<_ :j)—»« (8.20)
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Multiplying with G from left, we obtain the rule for the “propagation” gf

through the “vertix"C'

FG“G Crer . (8.21)

In this way,G*) G(*) can be written as a Clebsch-Gordan series, each term with a

single matrixG™ (see 6.9)):
n N
QR i dy A
dg :/dg E M
/ \Y 1 S @N \

=S (OO / dgGN ©8.22)
A

Clebsches are invariant tensors, so they are untouched by group integration. Integral
overG @™ reduces to clebsches times integrals

1 for A singlet
(N7
/dgG { 0 for A non-singlet (8.23)

Non-trivial reps average to zero, yielding.{8. We have gone into considerable
detail in deriving 8.22) in order to motivate the sum-over-the-singlets projection
operators rule&.18. Clebsches were used in the above derivations for purely
pedagogical reasons; all that is actually needed are the singlet projection operators.

8.2 CHARACTERS

Physics calculations (such as lattice gauge theories) often involve group invariant
quantities formed by contracting with invariant tensors. Such invariants are of
the formtr (hG) = h{G®, whereh stands for any invariant tensor. The trace of an
irreducible[d x d] matrix repX of g is called thecharacterof the rep:

Xa(g) =tr G =GS. (8.24)
The character of the conjugate rep is
XM9) = xalg)x = tr &7 = (GT);. (8.25)

Contracting 8.14) with two arbitrary invarianfd x d] matricesh? and (f7)¢, we
obtain thecharacter orthonormality relation

dng hg)x XA (hg") (8.26)

@ >\, w1 irreducible
dg @ reps ) .
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The character orthonormality tells us, that if two group variant quantities share a
GG pair, the group averaging sews them into a single group invariant quantity. The
replacement of;® by the tracey, (h'g) does not mean that any of the tensor index
structure is lost(z% can be recovered by differentiating

d
Gb = —xa(hlg). (8.27)
dhy

The birtracks and the characters are two equivalent notations for evaluating group
integrals.

8.3 EXAMPLES OF GROUP INTEGRALS

We will illustrate @.18) by two examplesSU (n) integrals oveGG andGGGTGT.
A product of twoG’s is drawn as
a—}—€ b
GbGe = (8.28)
¢ —<}—d
(s are acting oV ? tensor space which is decomposable ®yiinto the sym-
metric and the antisymmetric subspace

0002 = (Ps)ge,™ + (Pa) g "

ac’? ac?

(Pu)ye ™ =5 (0060 +547)

}«S-C;{:+><} (8.30)

(Pa) o = & (8057 + 516")

——
——
nin+1) nin —1)
dsy=——"—, dg=———.
2 A 2

The transposition of indicelsandd is explained in sec#.1; it ensures a simple
correspondence between tensors and birdtracks.

For SU(2) the antisymmetric subspace has dimensign= 1. We shall return
to this case in secil5.1 Forn > 3, both subspaces are non-singlets, and by the
second integration rule

%
Il
N = N

(8.31)

SU(n) : /dgGngf =0,n>2. (8.32)

As the second example, we take the group integral &6 TG,

This rep acts oiV? ® 7 tensor space. There are various ways of constructing
the singlet projectors; we shall give two.
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We can treat th&’2 © V~ space as a Kronecker product of spagé& anda V-
We first reduce the particle and antiparticle spaces separate8/28 (

el ol s =i =g
— == === ¢

The only invariant tensors that can project singlets out of this space (foB) are
index contraction with no intermediate lines;

DE 3€

Contracted with the last two reps i8.83), they yield zero. Only the first two reps
yield singlets

———
—— 0 8.35
8_‘_‘; n+1%€ n—19€ ( )

The projector normalization factors are the dimensions of the associate@r2ps (
The GGG'GT group integral written out in tensor notation is

1 .
/ A9G1GYGIG = 5 (5462 + 5284) (5;55 +5;5{)

! a a e e
o 1) (9302 = 6253) (5h5§ - 5g6,{) . (8.36)

We have obtained this result by first reducing/? and ®V°. What happens if
we reducd’? ® V- as(V @ V)2 ?

We first decompose the tWid® V' tensor subspaces into singlets and adjoint reps
(see seci2.2):

5~ 1D C 5>C 15C 1D

= + + - + - : (8.37)
—— 2
S "D C O>C¢C "D ¢ "5C
The two cross terms with one intermediate adjoint line cannot be reduced further.

The 2-index adjoint intermediate state contains only one singlet in the Clebsch-
Gordan seriesl5.25, so that the final resul[] is

= 3538w

It can be checked, by substituting adjoint rep projection operafod$)( that this
is the same combination of Kronecker deltas&s4).

To summarize, the projection operators constructed in this monograph are all that
is needed for evaluation of group integrals; the group integral for an arbitrary rep is
given by the sum over all singlet8.(L8 contained in the rep.
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Chapter Nine

Unitary groups

(P. Cvitanovt, H. Elvang, and A. D. Kennedy)

U(n) is the group of all transformations which leave invariant the nggm=
52q°q,. of a complex vectoy. For U(n) there are no other invariant tensors
beyond those constructed of products of Kronecker deltas. They can be used to
decompose the tensor repsiofr). For purely covariant or contravariant tensors,
the symmetric group can be used to construct the Young projection operators. In
sects.9.1-9.2 we show how to do this for 2- and 3-index tensors by constructing
the appropriate characteristic equations. For tensors with more indices it is easier to
construct the Young projection operators directly from the Young tableaux. We use
the projection operators so constructed to evaluate characters ande3ficients
of U(n).

For mixed tensors reduction also involves index contractions and the symmetric
group methods alone do not suffice. In seBt8-9.10the mixedU (n) tensors are
decomposed by the projection operator techniques introduced in cBapter

9.1 TWO-INDEX TENSORS

Consider 2-index tensoig") @ ¢*) € V2. According to 6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the

identity and the flip §.2)
o= >< .
= > > -1,

(0 +1)(0 —1)=0. (9.1)

Hence, the roots arg, = 1, Ay = —1, and the corresponding projection operators
(3.45 are

Plzi_(i(_ll))l:%(l-l-a):%( +><> (9.2)
Py= fl__ll _ %(1 —o) = % ( _ ><> . 9.3)

We recognize the symmetrization, antisymmetrization operatofs (6.15; P, =
S, P, = A, with subspace dimensiods = n(n+1)/2,ds = n(n—1)/2. In other

The flip satisfies
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words, under general linear transformations the symmetric and the antisymmetric
parts of a tensar,;, transform separately:

=Sz + Ax,

1 1
Tap = —(xab + Tpa) + 3 (Jcab Tha)

— T 00

The Dynkin indices for the two reps follow by 28 from 6;5’s:

N Q)

N
T n 1+ 2

l\DI)—l

N

=ln+2). (9.5)
Substituting the defining rep Dynkin indéx' = C'4 = 2n, computed in sec®.2,
we obtain the two Dynkin indices

2 —9
nt f=""% (9.6)

0 —
! on 2n

9.2 THREE-INDEX TENSORS

3-index tensors can be reduced to irreducible subspaces by adding the third index
to each of the 2-index subspaces, the symmetric and the antisymmetric. The results
of this section are summarized in talflel and tabled.3. We mix the third index

into the symmetric 2-index subspace using the invariant matrix

Q = S120(23)S12 = % . (9.7

Here projection operatol$,;, ensure the restriction to the 2-index symmetric sub-
space, and the transpositiep;) mixes in the third index. To find the characteristic
equation forQ, we compute)?:

1 1 1
Q2 = 5120(23)5120(23)512 = 9 (512 + 5120(23)512) = 5512 + 5@

Eivivi e i)

Hence,Q satisfies

(Q-1)(Q+1/2)S12=0, (9.8)
and the corresponding projection operat@&sglp are
Q+31 1

P = Si12= 75 (0(23) + (123 + 1) S12 = S

1+5 3
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<>< & ) JF- HE (9.9)
P, = _QE Sip = —512A23312 = BE. (9.10)

Hence, the symmetric 2-index subspace combines with the third index into a sym-

metric 3-index subspacé.(L3 and a mixed symmetry subspace with dimensions

n(n+ 1)(n + 2)
3!

dl :trP1 = (911)

4 2
dp=tr P = 3 — % (9.12)

The antisymmetric 2-index subspace can be treated in the same way using invariant

matrix
Q = A120(23)A12 = E (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry 3-
index tensors are given in tab#el. Symmetries of the subspace are indicated by
the corresponding Young tableaux, tabl2 For example, we have just constructed

(1[2)e[@E=(1[2[3o 12
0= - L
B T3

(9.14)

9.3 YOUNG TABLEAUX

As we have seen in the above examples, the projection operators for 2-index and 3-
index tensors can be constructed using the characteristic equations. This, however,
becomes cumbersome when applied to tensors with more than 3 indices. We now
show how to construct Young projection operators for the irreducible representations
of U(n) directly from the Young tableaux.

9.3.1 Definitions

Partitionk boxes intoD subsets, so that thath subset containg; boxes. Order
the partition so the set = [\, Ao, ..., Ap] fulfills \y > Xy > ... > A\p > 1and
Zf:l A; = k. The diagram obtained by drawing tlie rows of boxes on top of
each other, left aligned, starting wity, is called aYyoung diagrany.
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ExAMPLES: Fork = 4 the ordered partitions fdr = 4 are[4], [3,1],[2,2],[2, 1,1]
[

and[1,1,1,1]. For thek = 7 partition[4, 2, 1] the Young diagram i;J ‘and

for thek = 3 partition[1, 1,1] itis @

A box in a Young diagram can be assigned a coordifatg) such thaty =
{(i,7) € Z*]1 < j < \;}. Herei label the rows ang the columns.

Inserting a number from the sét,...,n} into every box of a Young diagram
Y, in such a way that numbers increase when reading a column from top to bottom,
and numbers do not decrease when reading a row from left to right yiefdaray
tableauY,. The subscript: labels different tableaux derived from a given Young
diagram, that is different admissible ways of inserting the numbers into the boxes.
Denoting the number in the, j)th box by, (7, j), we have

Yo ={(a(i,5)) € {1,...,n}* [ (i,5) €Y,
Ta(i?j + 1) Z Ta(iaj)a
7a(i 4+ 1,7) > 7a(i, 5) }

A Young tableau with numbers inserted as above is callgdrdard arrangement
The monotonically ordered arrangement

Yo ={(7a(i,5)) €{1,... .k} [(i,5) €Y,
Ta(iy G+ 1) > 74(i,7),
Ta(i 4+ 1,5) > 7a(i, )}

is called ak-standard arrangement

In the following, we denote by Young diagram Y a box diagram without numbers,
and by Young tableaux ya diagram filled with a standard arrangement. Often we
simplify the notation by using Y, Z, ...to denob®mth Young diagrams and Young
tableaux.

ThetransposeliagramY! is obtained from Y by interchanging rows and columns.
For example, the transpose[8f1] is [2, 1, 1].

An alternative labelling of a Young diagram is to list the numiagrof columns
with m boxes agb; b, ...). Havingk boxes we must havgfnz1 mb,, = k. As
an example, we see that, 2, 1] and (21100. ..) label the same Young diagram.
Similarly for [2,2] and(020. . .). This notation is handy when considering Dynkin
labels.

9.3.2 SU(n) Young tableaux

We now show that a Young tableau with no more tharows corresponds to an
irreducible rep ofSU (n).

A k-index tensor is represented by a Young diagram wittoxes — one may
think of this as g-particle state. FofU (n) there aren 1-particle states available,
and the irreduciblé-particle states correspond to a Young tableaux obtained by
inserting the numbers, ..., n into the k boxes of the Young diagrams. Boxes
in a row correspond to indices that are symmetric under interchanges (symmetric
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multiparticle states), and boxes in a column correspond to indices antisymmetric
under interchanges (antisymmetric multiparticle states).

Consider the reduction of a 2-particle state, that is a 2-index tensor, into a sym-
metric and an antisymmetric stai4). Using Young diagrams we would write this
as

D®D:DH@H (9.15)

For then = 2 case the Young tableaux of SU(2) are:

1[1], [a][2], [2]2] and it

The dimension of an irreducible rep 8T (n) is found by counting the number
of standard arrangements. Thus for SJihe symmetric state is 3 dimensional,
whereas the antisymmetric state is 1 dimensional, in agreement with the formulas
(6.4) and 6.15 for the dimensions of the symmetry operators. In sget.1we
shall state and prove the dimension formula for a general irredudipig rep.

Arep of SU(n), or A,,—; in the Cartan classification, table7, is characterized
by n-1 Dynkin labelsaas . . . a,,_1. The corresponding Young tableau (defined in
sect.9.3.]) is given by(ajas . ..a,—100...). For example, folSU(3)

(10)=01 =3 (20)=[ ] =6
(0= =3 (02) = =6 (9.16)
(1) =17 =3 (21) = —15 .

For SU(n) columns cannot contain more thanboxes, as it is impossible to
antisymmetrize more than labels. Columns of. boxes can be contracted away
by means of the Levi-Civita tenso8.@7). Hence, the highest column is of height
n-1, which is also the rank ofU(n). Furthermore, folSU(n) a column withk
boxes (antisymmetrization of covarianindices) can be converted by contraction
with the Levi-Civita tensor into a column dh-k) boxes (corresponding to-%)
contravariant indices). This operation associates with each tableau a conjugate rep.
Thus, theconjugateof a SU (n) Young diagram Y is constructed from the missing
pieces needed to complete the rectangle aws:

- e . (9.17)

Thatis, add squares below the diagram of Y such that the resulting figure is a rectan-
gle with heightr» and width of the top row in Y. Remove the squares corresponding
to Y and rotate the rest by 180 degrees. The result is the conjugate diagram of Y.
For example, foiSU(6), rep (20110)

X

(9.18)
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has as its conjugate rep (01102). In general,$b&n) reps(b,1bs...b,_1) and
(bn—1 . ..b2by) are conjugate. For example(if0 . .. 0) stands for the defining rep,
then its conjugate is represented(99 . .. 01), ie. a column ofn-1 boxes.
We prefer to keep the conjugate reps conjugate, rather than replacing them by
columns of(n-1) defining reps, as this will give usU (n) expressions valid for any
n.

9.3.3 Reduction of direct products

We now state the rules for reduction of direct products sucl® d$)(in terms of
Young diagrams:

Draw the two diagrams next to one another and place in each box of the second
diagram aru;, 7 = 1, ..., k, such that the boxes in the first row all havein them,
second row boxes have in themetc The boxes of the second diagram are now
added to the first diagram to create new diagrams in accordance to the rules

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to the sum of the
number of boxes in the original two diagrams.

3. For SUn) no diagram has more thanrows.

4. Making a journey through the diagram starting with the top row and entering
each row from the right, at any point the numbemrgé encountered in any
of the attached boxes must not exceed the number of previously encountered
a;—1's.

5. The numbers must not increase when reading across a row from left to right.
6. The numbers must decrease when reading a column from top to bottom.

The rules 4-6 ensure that states which were previously symmetrized are not an-
tisymmetrized in the product and vice versa and to avoid counting the same state
twice.

9.4 Young projection operators

Given a Young tableau Y o/ (n) with an k-standard arrangement we construct
the corresponding Young projection operakyr in birdtrack notation by identify-
ing each box in the diagram with a directed line. The oper&piis a block of
symmetrizers to the left of a block of antisymmetrizers, all imposed on hrees.
The blocks of symmetry operators are dictated by the Yaliagramwhereas the
attachment of lines to these operators follows fromittstandard arrangement.

For a Young diagram Y witls rows andt columns we refer to the rows as,S
S, ...,Ss and to the columns as;AA., ...,A;. Each symmetry operator iRy
is associated to a row/column in Y, hence we label a symmetry operator after the
corresponding row/column,
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A1 A2 A3A4A s
Sy \
Sz

N\
e

We denote byS;| or |A;| thelengthof a row or column, respectively, that is the
number of boxes it contains. Thi4;| also denotes the number of lines entering
the antisymmetrizer A In the above example we hajf | = 5, and|A,| = 3, etc

An example of the construction of the Young projection operators: The Young
diagramH:D tells us to use one symmetrizer of length three, one of length one,
one antisymmetrizer of length two, and two of length one. There are three distinct
k-standard arrangements, each corresponding to a projection operator

1[2[3

(9.20)

I
Q
~

1/2/4] (9.21)

13[4 , (9.22)

I
Q
<

1444 4444 1444
Hi4 H”H 4

where a~ is a normalization constant. We use the convention, that if the lines
pass straight through the symmetry operators, they appear in the same order as they
entered. More examples of Young projection operators are given ins&ciThe
normalization is given by

[Ty ISi TSy A !

Y] "
where|Y]| is a combinatoric number calculated by the following hook rule. For each
box of the Young diagram Y write the number of boxes below and to the left of the
box (including the box itself — once). Thel| is the product of the numbers in
all the boxes. For instance,

ay = (923)

6]5]|3[1]

Y =4|3]1 (9.24)
211
has|Y| = 6!- 3. We prove that this is the correct normalization in appediXhe
normalization only depends on the Young diagram, not the particular tableau.

For multidimensionalirreducible reps the Young projection operators constructed
as above, will generally be different from the ones constructed from characteristic
equations, see secis1-9.2, but the difference amounts to a choice of basis, so they
are equivalent.

We prove in appendiB that the above construction indeed yields well-defined
projection operators. Some of the properties of the Young projection operators:




GroupTheory December 10, 2002

92 CHAPTER 9

« The Young projection operators are indgedjection operatorsP2 = Py.

* The Young projection operators asethogonal If Y and Z are two different
k-standard arrangement, théx P, = 0 = Pz Py.

» For a givenk the Young projection operators constitute a complete set such
thatl = > Py, where the sum is over dltstandard arrangements Y with
boxes, and is the[k x k] unit matrix.

The dimensionly = tr Py of a Young projection operatdpy can be calculated
directly by tracingPy and expanding it usings(10 and €.19. In practice, this
is unnecessarily laborious. Instead, we offer two simple ways of computing the
dimension of an irreducible rep from its Young diagram.

9.4.1 A dimension formula

Let fy (n) be the polynomial im obtained from the Young diagram Y by multiplying
the numbers written in the boxes of Y, according to the following rules:

1. The upper left box contains an
2. The numbers in a row increases by one when reading from left to right.

3. The numbers in a column decrease by one when reading from top to bottom.

Hence, ifk is the number of boxes in Yy (n) is a polynomial inn of degreek.
ForU(n) the dimension of the irreducible rep, labelled by the Young diagram Y,
is

fx(n)
dy v (9.25)
EXAMPLE: With Y = [4,2,1], we have
n (n+l n+# n+$
frm)=li[a] =2 = 1)} - 9(n+3),
n-2
6/4]2[1]
Y[=]3]1 = 144, (9.26)
1]
hence,
202 1\2(,2
dy — n?(n* —1)*(n* —4)(n + 3) ’ 9.27)

144

. This dimension formula is derived in appendix Next we give an intuitive
interpretation of what this formula means.
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9.4.2 Dimension asthe number of strand colorings

The dimension of a Young projection operatBy of SU(n) can be calculated
by counting the number of distinct ways, in which the trace diagram of a Young
projection operator can be colored.

Draw the trace of the Young projection operator. Each line is strand, a closed path
which we draw as passing straight through the symmetry operators. Order the paths
in accordance to thke-standard arrangement (see example). The lines are colored
in this order. Having: colors we can color the first line in different ways.

Rule 1: If a path, which could be colored iaways, enters an antisymmetrizer,
the lines below it can be colored in— 1, k& — 2, ...ways.

Rule 2: If a path, which could be colored ih ways, enters a symmetrizer, the
lines below it can be colored ih+ 1, k + 2, ...ways.

Label each path with the number of ways it can be colored. The number of ways
to color the trace diagram is the product of all the factors obtained above; but this
is simply fy (n) defined in sect9.4.1 An example:

o
EEE
o
\I
Il

9.5 REDUCTION OF TENSOR PRODUCTS

We now apply the rules for decomposition of direct products of Young diagrams/tableaux
to several explicit examples. We use the tableaux to compute the dimensions and
construct the Young projection operators. We have already treated the decomposi-
tion of the 2-index tensor into the symmetric and the anti-symmetric tensors, but we
shall reconsider the 3-index tensor, since the projection operators will be different
from those derived from the characteristic equations in Sezt.

9.5.1 Three- and four-index tensors

According to the rules in sec.3.3 the 3-index tensor reduces to

DeEeE- (@)@z@ 12l [1 3@9.29)
= 3

The corresponding dimensions and Young projection operators are given i\.table
For simplicity, we neglect the arrows on the lines where this leads to no confusion.



GroupTheory December 10, 2002

94 CHAPTER 9

Let us check the completeness by an computation. Inthe sum of the fully symme-
tric and the fully antisymmetric tensors all the odd permutations cancel, and we are

left with HE ) EIE _l ( . & N %) (9.30)

Expanding the two tensors of mixed symmetry, we obtain

R e e

Adding (9.30 and ©.31) we get

== o S T =

verifying the completeness relation.
For 4-index tensors the decomposition is performed as in the 3-index case, re-
sulting in table9.4.

9.5.2 Basisvectors

The Young projection operators as constructed above are also projection operators
of the symmetric grougy,,. If we let Y be a Young tableau labelling an irreducible
rep ofS,,, the dimension of the rep is

(9.33)

For the 2-index tensors we see that application of the projection operators project
any group element to the subspace in question.
For the 3-index tensors the result is not as simple as that, because téy

is 2-dimensional. Instead, when the 3-index projection operators are applied from
the right, the group elements §f, are projected to the set

S5k | [
=z s E

of basis vectors. For higher index tensors there are similar sets of basis vectors.
The number of components in each basis vector is the dimension of the projection
operator inS,,.

w
[SS1

'
[SN1

9.6 3-J SYMBOLS

The SU(n) 3-vertex is written

X
Y
= axayag
z

(9.35)

Y Y Y Y
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in terms of the Young projection operatdpg, Py, andPy. If b+ ¢ # a the vertex
vanishes; it = b+ cthe vertex might be non-vanishing. The overall normalization
is arbitrary, but,/axavyaz is a natural choice, se8.23.

A 3-j consists of two fully contracted 3-vertices. We, therefore, have

(9.36)

N
X
I
Y Y VY Y

which we writetr (X ¢ Z) ® Y. As an example, take
_ _|1[2]4] _
X— , Y_3567 and Z— .

Then

L

For economy of notation, we omit the arrows on the Kronecker delta lines.

9.6.1 Evaluation by direct expansion

The simplest 3¢'s to evaluate aretr (1B [) @[] ] and tr (IS []) ® H

Any SU (n) 3-j may be evaluated by direct expansion of the symmetry operators,
but the resulting number of terms grows combinatorially with the total number of
boxes inthe Young diagram Y, making brute force expansion an unattractive method.

There is a slightly less brutal expansion method. Expanding one symmetry op-
erator may lead to simplifications of the diagram, for instance by using rules such
as 6.7), (6.9), (6.17, and 6.19. An example of the application of this method is
given in (Elvang).

If Y is a Young diagram with a single row or a single column, it is easily seen
thatthe 35 X ® Y ® Z is either 0 ordy.

9.6.2 An application of the negative dimension theorem

An SU (n) invariant scalar is a fully contracted object (vacuum bubble) consisting
of Kronecker deltas and Levi-Civita symbols. Since there are no external legs,
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the Levi-Civitas appear only in pairs, making it possible to combine them into
antisymmetrizers. In the birdtrack notation, 87 (n) invariant scalar is therefore
a vacuum bubble graph built only from symmetrizers and antisymmetrizers.

The negative dimensionality theorem i/ (n) states that for an§U (n) invari-
ant scalar exchanging symmetrizers and antisymmetrizers is equivalent to replacing
n by —n:

SU(n) = SU(—n) , (9.37)

where the bar 08U indicates transpositiorie. exchange of symmetrizations and
antisymmetrizations. The theorem also applie§ {a) invariant scalars, since the
only difference betweetl (n) andSU (n) is the invariance of the Levi-Civita tensor
in SU(n). The proof of this theorem is given in chapiies:
For the dimensions of the Young projection operators we Havén) = dy (—n)
by the negative dimensionality theorem, whetdsthe transpose of thestandard
arrangement Y; hence, it suffices to compute the dimension once, either for’y or Y
Now for k-standard arrangements X, Y, and Z, compare the diagrakf of
Y! @ Z to that of X ® Y @ Z. The diagrams are related by a reflection in a
vertical line, reversal of the arrows on the lines, and interchange of symmetrizers
and antisymmetrizers. The first two operations do not change the value of the
diagram, hence, the value Bf @ Y ® Z! is the value oX @ Y ® Z withn < —n
(and possibly an overall sign). Hence, it is sufficient to calculate approximately
half of all 3-j’s.

9.6.2.1 Challenge

We have seen that there is a coloring algorithm for the dimensionality of the Young
projection operators. Find a coloring algorithm for thg’8-of SU(n) — open
question

9.6.3 A sumrulefor 3-5's

LetY be ak-standard arrangement wittboxes, and leA be the set of alk-standard
arrangements andl, the set ofk-standard arrangements wijttboxes. Then

X

> = (k—1)dy. (9.38)

(X,Z)eA Z

First of all, the sum is well-definedk. finite, because the 3is non-vanishing only
if the number of boxes in X and Z add up A9 and this only happens for finitely
many tableaux.

To prove this, recall that the Young projection operators constitute a complete set,
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> xen, Px =1, wherel is the[p x p] unit matrix. Hence,

3
>
3
>
3
>
3
>

dy = (k—1)dy.(9.39)

This sum rule offers a cross-check on the individugl &lculations.

9.7 CHARACTERS

Now that we have explicit Young projection operators we should be able to compute
any SU(n) invariant scalar. As an example, we will evaluate several characters
(introduced in sec8.2) for SU (n).

Given an irreducible rep, we have the corresponding Young talilestandard
arrangement Y, which enable us to calculate the chargetét/) = tr v M, where
M is a unitary[n x n] matrix.

Diagrammatically we shall denote M &¢;; = j———i. Then

Xy (M) = (9.40)
Expanding the symmetry operators and collecting terms, we find
k
Xy (M) =Y e (tr M) tr ME—™ (9.41)

m=0

wherek is the number of boxes in Y, and thg s are coefficients of the expansion.

9.8 MIXED TWO-INDEX TENSORS

As the next example consider mixed tensgrd ® g» € V @ V. The Kronecker
delta invariants are the same as in s@ct, but now they are drawn differently (we
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are looking at a “cross channel”):

—_——
identity: 1= fi =5¢0h =

trace: T'=T05=0065= D C (9.42)

TheT matrix satisfies a trivial characteristic equation
_ D O C — T, (9.43)

T(T—n)=0.

The corresponding projection operato3si®) are

P=_T=1") C. (9.44)
szl—%T:_)_—%D -« (9.45)

with dimensionsd; = tr P, = 1, dy = tr P, = n2 — 1. P; is the projection
operator for the adjoint rep ofU(n). In this way, the invariant matris" has
resolved the space of tensars € V @ V into

with roots\; = 0, \y = n;

cra?

. 1
singlet: Pz = —25" (9.46)
n
1
traceless part: Py = 2% — (ﬁx2> 5. (9.47)

Both projection operators leav¢ invariant, so the generators of the unitary trans-
formations are given by their sum

U(n) : é}—( = , (9.48)

and the dimension of thé(n) adjoint rep isV = tr P4 = §262 = n?. If we extend

the list of primitive invariants from the Kronecker delta to the Kronecker delta and
the Levi-Civita tensor.27), the singlet subspace does not satisfy the invariance
condition .58

\J
£0.

For the traceless subspa&45), the invariance condition is

EE
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Thisisthe samerelation &.25), as can be shown by expanding the antisymmetriza-
tion operator usingd.19, so the invariance condition is satisfied. The adjoint rep

is given by
o 1)C-3-1) €

1 1
— (T (Ty)* = 8908 — =502 (9.49)
a n
The special unitary groufU (n) is, by definition, the invariance group of the Levi-
Civita tensor (hence “special”) and the Kronecker delta (hence “unitary”), and its
dimension isN = n? — 1. The defining rep Dynkin index follows fron7(26) and
(7.27

7t =2n (9.50)
(This was evaluated in the example of s&cP). The Dynkin index for the singlet
rep ©.46 vanishes identically, as it does for any singlet rep.

9.9 MIXED DEFINING @ ADJOINT TENSORS

In this and the following section we generalize the reduction by invariant matrices
to spaces other than the defining rep. Such techniques will be very useful later on, in
our construction of the exceptional Lie groups. We consider the defipiadjoint
tensor space as a projection frdmw V space:

S {} (9.51)

The following two invariant matrices acting 6f  V space contract or interchange

defining rep indices:
R= ; 2 (9.52)
Q= E 2 = Z S . (9.53)

R projects onto the defining space and satisfies characteristic equation

2 _
R?=>—Q—<=”n 1r (9.54)

The corresponding projection operato3sAf) are
n
n? —1 ’
n

P =

Py = - .
T ——— 21

Q takes a single eigenvalue on the subspace

1
QR= o /=R (9.56)

(9.55)
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Q? is computed by inserting the adjoint rep projection operdiatg:

szm: ) _%>-<-< (9.57)

The projection on thé; subspace yields the characteristic equation
Py(Q*-1)=0, (9.58)
with the associated projection operators

Py = %R;(l +Q) (9.59)

e ()
:%< « +‘7<_ni1 )

<

2
1 1
:5( : _7{_”71 ) (9.60)

The dimensions of the two subspaces are computed by taking traces of their projec-

tion operators:
2
and similarly fords. This is tabulated in tabl@.5.

Mostly for illustration purposes, let us now perform the same calculation by

<nN+NN n+1——

n
utilizing the algebra of invariants method outlined in s8c®. A possible basis set,
picked from thel ® A — V ® A linearly independent tree invariants, consists of

(e,R,Q):<_(_, ;2 K) (9.62)

The multiplication table .39 has been worked out ir9(54), (9.56 and ©.57).
For example, thét,, ) g7 matrix rep forQt is

e 0 0 1 e
> (@)t =Q (R) = (0 ~1/n o) (R) (9.63)
veT Q 1 —-1/n 0 Q

and similarly forR. In this way, we obtain thé3 x 3] matrix rep of the algebra of

invariants
0 0 1 0 0 0 1
{e,R,Q} = 0].{0o n=2 0,0 =1/n 0 .
1 0 —-1/n 0 1 =1/n 0
(9.64)

1
T2
( n(n+2) (9.61)

OO =
o~ O
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From ©.54) we already know that the eigenvalues®fare {0,0,n — %}. The

last eigenvalue yields the projection operakor= n/(n? — 1), but the projection
operatorPy yields a 2-dimensional degenerate rep.has 3 distinct eigenvalues
{=1/n,1,—1} andis thus more interesting; the corresponding projection operators
fully decompose thé ® A space.— 1/n eigenspace projection operator is again
Py, but Py is splitinto 2 subspaces, verifyin§.60 and ©.59:

%:(Q+1XQ+2U__1(1 0 _g_R)

I+ +L) 2 1

Q-1)@+31) 1 1
PB_(ll)(1+i)_2<1 Q an). (9.65)
We see that the matrix rep of the algebra of invariants is an alternative tool for
implementing the full reduction, perhaps easier to implement as computation than
out and out birdtracks manipulations.

To summarize, the invariant matriprojects out the 1-particle subspaeée The
particle exchange matrig splits the remainder into the irreducible particle-adjoint
subspace#, and Ps.

9.10 TWO-INDEX ADJOINT TENSORS

Consider the Kronecker product of two adjoint reps. We want to reduce the space
oftensorse;; € A® A, withi = 1,2,... N. The first decomposition is the obvious
decomposition.4) into the symmetric and antisymmetric subspaces

1 = S + A
_ i I: . (9.66)
The symmetric part can be split into the trace and the traceless part,%ad9n (

1
S=—T+P
Nt T s

T-o I e

Further decomposition can be effected by studying invariant matrices iPthd’”
space. We can visualize the relation < betwden 4 andV? ® v by the identity

_SE}. (9.68)

This suggests introduction of two invariant matrices

(9.69)

=
Rﬁm 079
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R can be decomposed b9.45 into a singlet and the adjoint rep

ko= M + 3 9.71)
ir,

= R +
The singlet has already been taken into account in the trace-traceless tensor decom-
position ©.67). R’ projection on the antisymmetric subspace is

By the Lie algebra4 45

(AR'A 16>—Q—< H "AR'A 9.73)

and the associated projection operators

1 1
(P5)ij,k'l - %Cz’jmcmlk - %>—<
1
P, = I — g (9.74)
2n

split the antisymmetric subspace into the adjoint rep and a reminder. On the sym-
metric subspacé(67), R’ acts as’s R’ Ps. As R'T = 0, this is the same aSR’S.
Consider

swst= [ O-O T OO

We compute

=—{n* -4} (9.75)
Hence,SR'S satisfies the characteristic equation
24
(SR’S - ) SR'S =0. (9.76)

The associated projection operators split up the traceless symmetric sul@spgce (
into the adjoint rep and a reminder

2 2
P s 2 OO e
n? n2—4

Py = PS — P2 . (9.78)
The Clebsch-Gordan coefficients fé are known as the Gell-Mandg;;;, ten-

sors [/
m } dij . (9.79)
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(For SU(3), P; is the projection operatqi8 ® 8) symmetric— 8). In terms of

di;1’s, we have

n
Pa)ijwe = 55— dijmdm
( 2) 7.kl 2(77/2 — 4) J ke

n
— 72012 3 o, (9.80)
with the normalization

2(n? — 4
dz]kkoZ = {} = gézf (9 81)

Next we turn to the decomposition of the symmetrlc subspace induced by ®atrix
(9.69. @ commutes withS

38 8]

=5Q = SQS . (9.82)
On the 1-dimensional subspace :{7), it takes eigenvalue-1/n

1
T= =——T. .
So(@ also commutes with the projection operatdy from (9.67)

OPs = Q ( ! ) ey (0.84)

Q? is easily evaluated by inserting the adjoint rep projection opera®ot§)(

o) e

Projecting on the traceless symmetric subspace gives

Ps <Q2—1+ 4 >—O. (9.86)
On P, subspacé) gives

Blo{g8o o]
- O

Ho

'S to)
— 0O (9.87)
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Hence @ has a single eigenvalue
2
QP,=-=D, (9.88)
n

and does not decompose tRgsubspace; this is as it should be /ass the adjoint
rep and is thus irreducible. QR subspaceq.85 yields a characteristic equation

PQ'(QQ_l)Zoa

with the associated projection operators

P :7P2, 1-Q (9.89)

{118 < )

1
Py= 5 2 (14 Q) = 2Ps—P1 (1+Q)
1
-5 (r-n )
%<S+SQ— —2p -1 ) (9.90)

-HE 18 <)

and dimensions tabulated in taBlé. This completes the reduction of the symmetric
subspace in9.66). As in (9.82, @ commutes withA

QA= AQ = AQA . (9.91)
On the antisymmetric subspace, thé equation 9.85 becomes
0=A(Q* - 1+zR) A=A(Q*—1—Py). (9.92)
n

The adjoint rep$.74) should be irreducible. Indeed, it follows from the Lie algebra,
that@ has zero eigenvalue for any simple group:

PQ = CLA}@ ~0. (9.93)

On the remaining antisymmetric subspd¢g(9.92) yields the characteristic equa-
tion

P(Q*-1)=0, (9.94)

with corresponding projection operators

Po=3Pu(14Q) = 5A(a+Q ~ P)
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( -7%>%<>, (9.95)

18U -

To compute the dimensions of these reps we need

so both reps have the same dimension

1 1 2-1)(n?>-2
d6=d7= §(tI"A—tl"PA) = 5{%—712—1}

(n* —1)(n* - 4)
-2y, (9.98)

Indeed, the two reps are conjugate reps. The identity

1318 -

obtained by interchanging the two left adjoint rep legs, implies that the projection
operators9.95 and ©.96) are related by the reversal of the loop arrow. This is the
birdtrack notation for complex conjugation.

This decomposition of tw&'U (n) adjoint reps is summarized in taket and
table9.7.

9.11 CASIMIRSFOR THE FULLY SYMMETRIC REPSOF SU(N)

In this section we carry out a few explicit birdtrack casimir evaluations.
Consider the fully symmetric Kronecker productoparticle reps. Its Dynkin
label (defined on pag®9) is (p,0,0...0), and the corresponding Young tableau is

arow ofp boxes:[ [ [ --- [p]. The projection operator is given b§.{)

- p
PS:SZEEL
1

and the generato# (39 in the symmetric rep is

W:mi:E. (9.100)
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To compute the casimirs, we introduce matrices

——
X:xiTizm%: . E

XV =a2,(T")" = aw——€n. (9.101)
We next compute the powers &f:

b B
oo [ so-hi -l
0= )0~ 23S0+ - Do -2 - 3>H

X4:p

(9.102)
Thetr X* are then
tr X0 =d, <” tr- 1) -see 6.13 (9.103)
P
tr X =0 (semi-simplicity) (9.104)
+n)
x2og PPN 1
tr ds p— 1)tra: (9.105)
5 dy p—1 (-1-2) :
trX3="p(1 2 tra®
. np< +3n+1+ (n+1)(n+2) o
I(n+2 2
_nApMnt2p) 5, P+t 2D) (9.106)

(n+2)l(p—1)! n(n+1)(n+2)

—1 —1p-—2 —1p—2p-3
trxt=al ((1478 = ypP =P "2 gP— PP tr
n n—+1 n+1ln+42 n+ln+2n+3

—1 ) —2p-
+2 <3+6p p3l— b 3>(tra:2)2>. (9.107)

n+1 n—+2 n+2n+3
The quadratic Dynkin index is given by the ratiotofX 2 andtr 4 X2 for the adjoint
rep (7.29:
tr X2 dgp(p+n)
= = - . .l
traX2  2n2(n+1) (9.108)

To take a random example from Patera-Sankoff talilég]{ the SU (6) rep dimen-
sion and Dynkin index

2

rep dim Uy
(0,0,0,0,0,14) 11628 6460 ,

check with the above expressions.

(9.109)
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9.12 SU(N),U(N) EQUIVALENCE IN ADJOINT REP

The following simple observation speeds up evaluation of pure adjoint rep group-
theoretic weights3n-j)'s for SU(n): The adjoint rep weights fd/ (n) andSU (n)
are identical. This means that we can uselffie) adjoint projection operator

U(n) : }C - X (9.110)

instead of the tracelest/ (n) projection operator9.45, and halve the number of
terms in the expansion of each adjoint line.
Proof: any internal adjoint line connects twg’s:

100 00
0000

The trace part off.45 cancels on each line, hence, it does not contribute to the pure
adjoint rep diagrams. As an example, we re-evaluate the adjoint quadratic casimir

for SU(n):
CAN=<D=26=2{@—2@} .

Now substitute thé/(n) adjoint projection operatof(110:

CAN—2{8 '}—27171—1)

in agreement with the first exercise of setf.
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\
Sk

>

SA A

<
-+

/
ALt

S SA A

I

S SROES

NIlw

l

s |
2

\
T

n—
>/

+

dimension

n

(n+3)!
41(n-1)!

(n*-1)n(n+2)
8

n*(n°-1)
12

("’~1)n(n-2)
8

n!
(-4

Table 9.1 Projection operators for 2-, 3- and 4-index tensots(im), SU(n), n > p (p =

number of indices)
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2]

[w]=

S

[N

34|

2]

N

-
<%

4]

N

n!
A(n-4)!

Table 9.2 Young tableaux for the irreducible reps of the symmetric group for 2-, 3- and 4-
index tensors. Rows correspond to symmetrizations, columns to antisymmetriza-
tions. The reduction procedure is not unique, as it depends on the order in which
the indices are combined,; this order is indicated by labels 1, 2, 3 in.the boxes
of Young tableaux.
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Ya dYG PY(,
n(n+1)(n+2)
s S5
1]2] n(n’~1) 4 !
é 3 3
13 n(n?-1) é; E
; 3 3
n—2)(n—1)n
( )(6 ) I

Table 9.3 Reduction of 3-index tensor. The bottom row is the direct sum of the Young
tableaux, the sum of the dimensions, and the sum of the projection operators,
verifying the completenes$ 49.



GroupTheory December 10, 2002

UNITARY GROUPS

Y(l

2[ 3|

[

2] 4]

[

3[4

NI

N |-
N

2

3

el k] Bk

el @b

1]®[2]®[3]®[4]

dy

a

n(n+1)(n+2)(n+3)

24

(n—1)n(n+1)(n+2)
8

(n—1)n(n+1)(n+2)
8

(n—1)n(n+1)(n+2)
8

n%(n?—-1)
12

n%(n?-1)
12

(n—1)n(n+1)(n+2)
8

(n—2)(n—1)n(n+1)
8
(n—2)(n—1)n(n+1)
8

(n—=2)(n—=1)n(n+1)
8

4

e

Njw

Table 9.4 Reduction of 4-index tensors.
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A®q M A2 S As
Dynkin labels: (10...01) ® (10...) = (10. (100...02) @ (010...01)
| |
B @[] L] +
Dimensions: (n? —1)n n "("_12)("_2) + "("+12)("_2)
Indices: n+ ”Z;l = ("H)Zl(f"*l) + ("*221(3"“)
SU(3):
Dimensions: 8-3 3 15 + 6
Indices: 13/3 1/6 10/3 + 5/6
SU(4):
Dimensions: 15-4 4 36 + 20
Indices: 47/8 1/8 33/8 + 13/8

Projection operators:

Pl = n2n_1 > ¢ <
1
( < + >‘< T ontl

Py =

N[—=

Py =

N[

)

(-8 -0

Table 9.55U(n) V @ A Clebsch-Gordan series.
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AJ: create table 8.5 from manuscript

Table 9.6 Summary of the reduction of a Kronecker product of$#i@n ) adjoint reps. The
flip matrix F' induces decomposition into symmetric and antisymmetric subspaces
(9.66). The trace matrixI" projects out the singlet re®67. R’ from (9.70
projects the adjoint reps in both the symmetric and antisymmetric subspaces. Fi-
nally, the interchange matri@ from (9.69 decomposes thg,, andP, subspaces.
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Ay @Ay = M @ A2 @ A3 @ A4 ® A5 @ A6 (O] A7
Dimensions M2—12 = 1 + (¥—1) 4+ 2O=Dek) 4 223 4 2 ) 4 @20 g @ )eiod)
Dynkinindices 2(n*—-1) = 0 + 1 + 9 + nlnt3) + 1 + n’ 4 + 4
SU(3) example:
Dimensions 82 = 1 + 8 + 0 + 27 + 8 + 10 + 10
Indices 2-8 = 0 + 1 + 0 + 9 + 1 + 5 + 3
SU(4) example:
(101) ® (101) = (000) @ (101) @ (020) ® (202) ®  (101) @ (012) ® (210)
Dimensions 15° = 1 + 15 + 20 + 84 + 15 + 45 + 45
Indices 2-15 = 0 + 1 + 2 + 14 + 1 + 6 + 6
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Projection operators

ww = :MH\HU m
WMHMA:WLC — ' Numﬂw <
- - NAﬁwlmv w M - Sﬁs.pltu mw v Po = - % w M W

A {1 a&r
w0 ) Cp T TS

Py=3

Table 9.7 SUf{), n > 3 Clebsch-Gordan series for & A.
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Orthogonal groups

Orthogonal grougsO(n) is the group of transformations which leave invariant a
symmetric quadratic fornly, ¢) = g,.,.¢"¢”

gp,u:gup,:ll_(_o_)_v /L,I/:l,27...7n. (101)
If (g, ¢) is an invariant, so is its complex conjugéteq)* = ¢"**¢,.q., and
g =g =y —o——ev (10.2)

is also an invariant tensor. Matrit}, = g,.,g”” must be proportional to unity, as
otherwise its characteristic equation would decompose the defintimensional
rep. A convenient normalization is
Iuog’" =14,

e = —— (10.3)
As the indices can be raised and lowered at will, nothing is gained by keeping the
arrows. Our convention will be to perform all contractions with metric tensors with
upper indices and omit the arrows and the open dots:

g =p V. (10.4)

All other tensors will have lower indices. For example, Lie group generéiys”
from (4.29 will be replaced by

:L}——)(Ti)NDZL.

The invariance condition4(35) for the metric tensor

e

) 7 9ov +(13), 7 Guo =0 (10.5)
becomes, in this convenuon, a statement thatttn) generators are antisym-
metric:

I
(T3),,=—(Ti),, - (10.6)
Our analysis of the reps &fO(n) will depend only on the existence of a symmetric
metric tensor and its invertability, and not on its eigenvalues. The resulting Clebsch-
Gordan series applies both to the comp&€l(n) and non-compact orthogonal
groups, such as the Minkowski groufO(1, 3). In this chapter, we outline the
construction ofSO(n) tensor reps. Spinor reps will be taken up in chafiter
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10.1 TWO-INDEX TENSORS

In sect.9.1 we have decomposed th#/(n) 2-index tensors into symmetric and
antisymmetric parts. Fa¥O(n), the rule is to lower all indices on all tensors, and
the symmetric state projection operat®rd] is replaced by

/ ’
—_ [eg
Sp.l/,pa = gpp’gna/sll,uap

1
(g;wgw) + gupgl/o)

P e

From now on, we drop all arrows amd”’s and write 0.4) as

-1+

1 1
§(guagup + gupgua) + 5(

The new invariant, specific t6O(n), is the index contraction:

uoGvp = 9uoGup — gupgua) . (107)

Tul/,po =9uvYpo

T= ) C . (10.8)

This invariant satisfies a trivial characteristic equation

:) O C:nT, (10.9)

which yields the trace and the traceless part projection oper&dr,((9.45. As
T'is symmetric,ST = T, only the symmetric subspace is resolved by this invariant.
The final decomposition fO(n) 2-index tensors is

traceless symmetric:

1 1 j [ 1
(PZ)/w,pa = 5 (guagup + gupgua) - Eg/wg/m = - ED C ,

(10.10)
Snglet (Pl)/tu,pa = g,ulzgpa = ) C (1011)

. . 1
antisymmetric:  (P3) v, p0 = 3 (YuoGvp — Yup9ve) = I .(10.12)

The adjoint rep9.49 of SU (n) is decomposed into the traceless symmetric and the
antisymmetric parts. To determine which of them is the new adjoint rep, we substi-
tute them into the invariance conditiohQ(5. Only the antisymmetric projection
operator satisfies the invariance condition
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Young tableaux [ | x[ ] = ° + H + [1]
Dynkin labels (10...) x (10...)= (00...) + (010...) + (20...)
Dimensions n? = 1 + necl) oy (ni2)(n-1)
Dynkin indices 2n—L- = 0 + 1+ n=2
Projectors :%) C+I+{I_%) C}

Table 10.150(n) Clebsch-Gordan series fof ® V.

so the adjoint rep projection operator 80 (n) is

é}{: I . (10.13)

The dimension o650 (n) is given by the trace of the adjoint projection operator:

1
N=trPs= K = % . (10.14)

Dimensions of the other reps and the Dynkin indices (see $ebtare listed in
table10.1

10.2 MIXED ADJOINT @ DEFINING REP TENSORS

The mixed adjoint-defining rep tensors are decomposed in the same way as for
SU(n). The intermediate defining rep state matRiX9.52) satisfies the character-

istic equation
R2:>—O—<:n;1R. (10.15)

The corresponding projection operators are
2
n—1

P1: ’
_ _ 2 >—< (10.16)
n—1

The eigenvalue of) from (9.53 on the defining subspace can be computed by
inserting the adjoint projection operatdQ(13:

1
QR=_p [ =5F (10.17)

Py=
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Q? is also computed by inserting@.13:

QQZM:%{‘—K}:%(I—Q). (10.18)

The eigenvalues arg-1, %}, and the associated projection operat@rd%) are

P2:P4§(1+Q)=§<1—%R) <1+Q>:§(1+Q_%R>

:§{+7{_n§1 } (10.19)
2?{} . (10.20)

This decomposition is summarized in tafile.2

The same decomposition can be obtained by viewingtén) defining-adjoint
tensors a@xm products, and starting with th€U (n) decomposition along the
lines of sect9.2

P3P4Z1))(12Q);{

10.3 TWO-INDEX ADJOINT TENSORS
The reduction of the 2-index adjoint rep tensors proceeds aStfign). The an-

nihilation matrix R (9.70 induces decompositior1(.11)-(10.12 into three tensor
spaces

-1 o D () OO

On the antisymmetric subspace, the last term projects out the adjoint rep:

I:n12H+{I_nl2 } (10.22)

The last term in10.21) does not affect the symmetric subspace
1
1O ={0 0
1
HO- O o

because of the antisymmetry of ti$(n) generatorsd;;, = 0 for orthogonal
groups). The second term ih@.27)

Rg = m - %) C (10.24)
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ORTHOGONAL GROUPS
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projects out the intermediate symmetric 2-index tensors subspace. To normalize it,
we computeR?:

- Q0 -2 O (o500

4
Rg decomposes the symmetric 2-index adjoint subspace into

a0 (=<
{j[ H ) c}

— m__) C . (10.26)

Because of the antisymmetry of t8€ (n) generators, the index interchange matrix
(9.69 is symmetric

(10.25)

PQ = =

5Q=5Q"=Q

838 -

so it cannot induce a decomposition of the antisymmetric subspat@.k?. Here
Q™ indicates the diagram fap with the arrow reversed. On the singlet subspace it

has eigenvalug:
- g) (= %T . (10.28)

On the symmetric 2-index defining rep tensors subspace, its eigenvalue%s atso
the evaluation by the substitution of adjoint projection operatorsl Byl yields

QR = 81}: - %SR . (10.29)

Q? is evaluated in the same manner:

S88 8

. %s(l —Q). (10.30)

Thus,Q satisfies the same characteristic equation as0rnl§. The corresponding
projection operators decompose the symmetric subspace (the third terth2g)
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e (>t O30

I K ot O wom
&

This Clebsch-Gordan series is summarized in tabl&

The reduction of 2-index adjoint tensors, outlined above, is patterned after the
reduction forSU (n). Another, fully equivalent approach, is to consider #@(n)
2-index adjoint tensors z@ X H products and start from the decomposition of
sect.9.5.1 This will be partially carried out in sect0.5

into

10.4 THREE-INDEX TENSORS

In the reduction of the 2-index tensors in sé€L.1, the newSO(n) invariant was the
index contraction0.9. In general, for a multi-index tensor, thé/(n) — SO(n)
reduction is due to the additional index contraction invariants. Consider the fully
symmetric 3-indexSU (n) state in tabl€.3. The newSO(n) invariant matrix on

this space is
R— M . (10.33)

This is a projection onto the defining rep. The normalization follows from

S0 i w

Theam rep of SU(n) thus splits into

H:E n+2 {H:E n+2 } (10.35)

On the mixed symmetry subspace in tablg one can try various index contraction
matricesR;. However, their projection®, R; P, are all proportional to

j]? ?]Z (10.36)

The normalization is fixed by

E — %(n ~1) , (10.37)

and the mixed symmetry rep 68U (n) in (9.12) splits as




Symmetric Antisymmetric

CHAPTER 10

A®A = M @ A2 S A3 52 A4 @ As 52 A6
Young tableaux mxm = e + []] + + + m + ] 7
Dynkin labels  (010...x(010...) = (00...) + (20...) + (02...) + (00010...) + (010...) + (1010...)
Dimensions e I T NG L T T YU | (RS S
Dynkin indices = 0 + + + + +
SO(3) 9 = 1 + 5 + 0 + 0 + 3 o+ 0
SO(4) 36 = 1 + 9 + 10 + 1 + 6 F 9
SO(5)=Sp(4) _100 = 1 + 14 + 35 + S + 10+ 35
SO(6)=SU(4) 225 = 1 o+ 20 + 84 + 15 + 15 + (45+45
SO(7) 441 = 1 + 27 + 168 + 35 + 21+ 189
SO(8) 784 = 1 + 35 + 300 + 70 + 28 o+ 350
SO(9) 1296 = 1 + 44 + 495 + 126 + 36+ 594
SO(10) 2025 = 1 + 54 + 770 + 210 + 45 o+ 945
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Projection operators

2 1
ww = |§AS\CU m ’ wm n—2
Po= ity -:) C P

2
P + |§L§|5U m

3 >
Il Il
i win
I +
[\
|
|-
Il
I
iy

Table 10.350(n), n > 3 Clebsch-Gordan series fef @ A.
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The other mixed symmetry rep in tal#e3 splits in analogous fashion. The fully
antisymmetric space is not affected by contractions, as

EID_ _0 (10.39)

by the symmetry of,,,.. Besides, a@ is the adjoint rep, we have already performed

theH x [ decomposition in the preceding section. The full Clebsch-Gordan series
for the SO(n) 3-index tensors is given in table.4

10.5 GRAVITY TENSORS

In adifferent application of birdtracks, we now change the language and construct the
“irreducible rank-four gravity curvature tensors”. The birdtrack notation for Young
projection operators had originally been invented by Penrbsd [n this context.
The Riemann-Christoffel curvature tensor has the following symmetrieg:[
Raﬁ’y& - *Rﬁa'yé
R(xﬂ'yé = R’y&xﬁ (1040)
Rapys + Bpyap + Ryaps =0
Introducing birdtrack notation for the Riemann tensor
P~
—~—
Rapyo =, _— R | (10.41)
5"
we can state the above symmetries as

I
R |[= R |, 10.42
= = (10.42)

:%@ R |, (10.43)
R =GR+ R =0, (10.44)

The first condition says thak lies in H ® H subspace. We have decomposed
this subspace in tabl@.4.  The second condition says th&tlies in H < H

Py

interchange-symmetric subspace, which splits E@)anda subspaces:

EE ERE o
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The third condition says tha has no components in tl%pace:

E R +E R +K R =3E R|=0. (10.46)

Hence, the Riemann tensor is a p@ tensor, whose symmetries are summarized
by the[-|-| rep projection operator B]:

a o

i Ia/ 4 Y
(PR)apys’ 77 = 55 % e (10.47)

5 3

(PRR)aﬁ'yé = (PR>an576 v Ra’ﬁ’v’ts’ = Raﬁ’y5

i -
3 _

This compact statement of the Riemann tensor symmetries yields immediately the

number of independent componentsifs.s, ie. the dimension of th@ﬂ reps in
table9.4:

R | (10.48)

n%(n? —1)
12

The Riemann tensor has the symmetries o@rep of SU(n). However, grav-
ity is also characterized by the symmetric tenggs which induces locabO(n)
invariance (more precisel§O(1,n — 1), but compactness is not important here).
The extra invariants built frorg,g’'s decompose&U (n) reps into sums 050(n)
reps.

TheSU (n) subspace, corresponding@, is decomposed by th€O(n) inter-
mediate 2-index state contraction matrix

o= E 1050)

The intermediate 2-index subspace splits into three irreducible repsyI-
(10.19

ZE P ve g,

The Reimann tensor is symmetric under the interchange of index pairs, so the anti-
symmetric 2-index state does not contribute

PrQa=0. (10.52)
The normalization of the remaining two projectors is fixed by computation of

2, Q%
2
e A 1o
peo 4 {M N 19 .@} , (10.54)
n—2 n

dp = tr Pp = (10.49)
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This completes th€O(n) reduction of the--| SU(n) rep (10.49:
| SU(n) — SO(n)
tableaux B} = H} + [T1 + o
projectors Pr = Py, + Pgq + B
dimensions n2(71L;—1) - (n+2)(nJ1r21)n(n73) + (n+2)(n—1) + 1
(10.55)

Here the projector for the traceleE@ tensor is given by’ = Pr — Ps — Py:

szgﬁ—nfgm+m9€'

(10.56)
The above three projectors project out the standard relativity tensors:

Curvature scalar:
R— —@ R =Re,Y (10.57)
Traceless Ricci tensor:
1 - 1
R;UJ - EguuR - __\C R |+ E) @ R (1058)

Weyl tensor:
C)\/u/ﬁ = (PWR)A/LDH

4 2
R _n—Q:l:IDE R +(n—1)(n—2)9 @ R

1

= R}\}LVI{ + n_29 (g,uvR)\n - g)\uR,un - g,U.I{R)\V + g)\HR,uv)
1
— T N N v vYukK . 1 "
(n _ 1)(77, _ 2) (gXK,g,u, g)\ gl )R ( 0 59)

The numbers of independent components of these tensors are given by the dimen-
sions of corresponding subspacesif.63. The Ricci tensor contributes first in
three dimensions, and the Weyl tensor first in four, so we have

n=2: R/\[U/H = (POR))\;UIK = %(g)\l/g;u@' - gkmg;u/)R
n=3: = g)\uR;m, - g;wR)\K, + g/mR)\u - g)\K,R;w (1060)
_%(g)\ug;uﬁ - gkmgu,V)R .
The last example of this section is an application of birdtracks to general relativity
indexmanipulations. The objectisto find the characteristic equation for the Riemann
tensor infour dimensionsWe contract .24 with two Riemann tensors

0= R (10.61)
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Expanding with 6.19 we obtain the characteristic equation

+2R-;l_—{€;—2 R R +% R R } (10.62)

For example, this identity has been used by Aéleal, eq. (E2) in ref. ].

10.6 SO(N) DYNKIN LABELS

In general, one has to distinguish between the odd and the even dimensional orthog-
onal groups, as well as their spinor and non-spinor reps. In this chapter, we study
only the tensor reps; spinor reps will be taken up in chapier

For SO(2r + 1) reps there are Dynkin labels(aqas . ..a,—1Z). If Z is odd,
the rep is spinor; iZ is even, it is tensor. For the tensor reps, the corresponding
Young tableau in the FischleB(11) notation is given by

7
(alag...ar,lZ) - (alag...ar,lgOO...) . (1063)
For example, foiSO(7) rep (102) we have

(102) — (1010...) = . (10.64)

For orthogonal groups, the Levi-Civita tensor can be used to convert a long column
of k& boxes into a short column @¢2r + 1 — k) boxes. The highest column which
cannot be shortened by this proceduresasxes, where is the rank ofSO(2r+1).

For SO(2r) reps, the last two Dynkin labels are spinor roots
(araz...a,—2Y Z). Tensor reps hav& + Z =even. However, as spinors are
complex, tensor reps can also be complex, conjugate reps being related by

(alag...YZ) = (alag...ZY)* . (1065)
ForZ >Y,Z + Y even, the corresponding Young tableau is given by
Z-Y

(alag e Clr_QYZ) — (a1a2 e Qp_9 D) OO .. ) . (1066)

The Levi-Civita tensor can be used to convert long columns into short columns. For
columns ofr boxes, the Levi-Civita tensor spli€3(2r) reps into conjugate pairs of
SO(2r) reps.

We find the formula of King $&] and Murtaza and Rashid {5 the most con-
venient among various expressions for the dimensiortfn) tensor reps given
in the literature. If the Young tableauis represented as in sebt3, the list of the
row lengthgA1, Ao, ... \,], then the dimension of the correspondi®i@(n) rep is
given by

k

k .
Cdsyr Ni+n—k—i—1) o
"= p! U (n — 2i)! jHlO‘l +A+n—i—j). (10.67)
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Herep is the total number of boxes, add is the dimension of the symmetric group
rep computed ind.24). For SO(2r) andx = r, this rep is reducible and splits into
a conjugate pair of reps. For example,

dr— %1\ (n+2)nn —2) = " = 4
11]
dr_ (n+2)n(n—1)(n—3)
8
dB} _ (n+2)(n —1—21)71(71 -3) 7 (10.68)

in agreement with1(0.59. Even though the Dynkin labels distinguisSi® (2 + 1)
from SO(2r) reps, this distinction is significant only for the spinor reps. The tensor
reps ofSO(n) have the same Young tableaux for the even and theusdd
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Chapter Eleven

Spinors

In chapterl0 we have discussed the tensor reps of orthogonal groups. However,
the spinor reps o60(n) also play a fundamental role in physics, both as reps
of space-time symmetries (Pauli spin matrices, Dirac gamma matrices, fermions
in D-dimensional supergravities), and as reps of internal symmetfiéx10)

grand unified theory, for example). In calculations of radiative corrections, the
QED spin traces can easily run up to traces of products of some twelve gamma
matrices [0(], and efficient evaluation algorithms are of great practical impor-
tance. A most straightforward algorithm would evaluate such a trace in some
1M =11-9-7-5-3 ~ 10,000 steps. Even computers shirk such tedium. A
good algorithm, such as the ones we shall describe here, will do the job in some
62 ~ 100 steps.

Spinors came to Cartafi(] as an unexpected fruit of his labors on the complete
classification of reps of the simple Lie groups. Diraé][rediscovered them while
looking for a linear version of the relativistic Klein-Gordon equation. He introduced
matricesy,, which were required to satisfy

(poyo +p1iy1+...) 2 = (Pt —pf —p5—...). (11.1)
Forn = 4 he constructed’s as[4 x4] complex matrices. FO§O(2r) andSO(2r +
1) v-matrices were constructed explicitly @8 x2"] complex matrices by Weyl and
Brauer [L56].

In the early days, such matrices were taken as a literal truth, and Klein and
Nishina [LO1] are reputed to have computed their celebrated Quantum Electrody-
namics cross-section by multiplyimgmatrices by hand. Every morning, day after
day, they would multiply away explicit [44] v, matrices and sum over's. In the
afternoon, they would meet in the cafeteria of the Niels Bohr Institute to compare
their results.

Nevertheless, all information that is actually needed for spin traces evaluation
is contained in the Dirac algebraic conditiohl(l), and today the Klein-Nishina
trace over Diragy’s is a textbook exercise, reducible by several applications of the
Clifford algebra condition on-matrices

{’V,uv')/u} =YY TV =29 1. (11.2)
Iterative application of this condition immediately yields a spin traces evaluation
algorithm in which the only residue of-matrices is the normalization factar1.
However, this simple algorithm is inefficient in the sense that it requires a combi-
natorially large number of evaluation steps. The most efficient algorithm on the
market (for anySO(n)) appears to be the one given by Kenned@y, [44]. In
Kennedy'’s algorithm, one views the spin trace to be evaluatedasjaoefficient.



GroupTheory December 10, 2002

130 CHAPTER 11

Fierz [66] identities are used to express tl3is-; coefficient in terms of;-j co-
efficients (see secL1.9. Gamma matrices af@”/?x2"/?] in even dimensions,
[2(n=1)/2x2(n=1)/2] in odd dimensions, and at first sight it is not obvious that a
smooth analytic continuation in dimension should be possible for spin traces. The
reason why the Kennedy algorithm succeeds is that spinors are really not there at
all. Their only role is to restrict th& O(n) Clebsch-Gordan series to fully anti-
symmetric reps. The correspondiBg and6-j coefficients are relatively simple
combinatoric numbers, with analytic continuations in terms of gamma functions.
The case of 4 spacetime dimensions is special because of the reducibHity ¢f

to SU(2) ® SU(2). Farrar and Neri{Z], who as of April 18 1983 have com-
puted in excess of 58,149 Feynman diagrams, have used this structure to develop
a very efficient method for evaluatingO(4) spinor expressions. An older tech-
nigue, described here in setf..§ is the Kahaned(] algorithm, which implements
diagrammatically the Chisholn?[] identities. REDUCE, an algebra manipula-
tion program written by Hearr8[], uses the Kahane algorithm. Thornbladb(]

has usedbO(4) C SO(5) embedding to speed-up evaluation of traces for massive
fermions.

11.1 SPINOGRAPHY

Kennedy P5] introduced diagrammatic notation fgrmatrices

W
(V") ap = , a,b=1,2,...,2"?2 or 2(n=1/2
a-<----- b
lgp=a-—-<--—-b, pu=12..n
<.
trl=; . (11.3)

In this context, birdtracks go under the name “spinography”. For notational simplic-
ity, we take ally-indices to be lower indices and omit arrows on thdimensional
rep lines. Thex-dimensional rep is drawn by a solid directed line to conform to the
birdtrack notation of chaptet. For QED and QCD spin traces, one might prefer
the conventional Feynman diagram notation

u

e a —L(— b

where the photons/gluons are in thelimensional rep a§O(3, 1), and electrons are

spinors. We eschew such notation here, as it would conflict $ii) birdtracks

of chapterl0. The Clifford algebra anti-commutator conditiohl(2) is given by
[T} [T}

- U . (11.4)
<-4 <
For antisymmetrized products gfmatrices, this leads to the relation
123 p 12 p

12 p
e,

(11.5)
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(we leave the proof as an exercise). Hence any produgtroftrices can be ex-
pressed as a sum over antisymmetrized productsrofitrices. For example, sub-
stitute the Young projection operators from taBlé into the products of two and
threey-matrices and use the Clifford algebddl (4):

[ = + N (11.6)

<« -Ltde <«

IR,V
<« -tllde -«
Only the fully antisymmetrized products ¢f are immune to reduction byL.{.4).

LYYV e mn
-Lbde - < ---1- <« -l---«
Hence, the antisymmetric tensors

) = 1 = <= = 0
*7,,,,,
u
F/(JI) = ’Y/Jz = = 1
- - €------
TR
2
M= b = o= 3
-1 <€------
UV o
3
FELV)O' = YWYl = = 3
1 <€------
Ky o Ha
(@ - - - - a
AV .. flg Vg Tz -+ Via)
R <L

provide a complete basis for expanding products-ofiatrices. Applying the anti-
commutator {1.4) to a string ofy’s, we can move the first all the way to the right

R T ]
LU Y] e W]

123 p 123 p

o TN )

(U|m‘<ﬁj“l+“”*”y<%+J

%(,Vlt1 7#2 . pyltp + 7/42 . ,yup,ym) —
ghriets o tte — gl Bz AR (11.10)

*

1(
2
<
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This identity has three immediate consequences
(i) traces of odd numbers afs vanish forn even
(ii) traces of even numbers ofs can be evaluated recursively
(i) the result does not depend on the direction of the spinor line.

According to (L1.10, any~-matrix product can be expressed as a sum of terms
involving g,,,,'s and the antisymmetric basis tensbf8), so in order to prove (i) we
need only to consider traces Bf*) for a odd. This may be done as follows:

%y
S .
=Mm-a)y 1=0. (11.11)

In the third step we have usedi1(1Q and the fact that is odd. HencetrI'(®)
vanishes for all odd if n is even. Ifn is odd,tr '™ does not vanish because by

(6.29
12 n
e - —% 112
Al ,(l ||||

Then-dimensional analogue of thg,

e Ty e (11.13)

commutes with ally-matrices, and, by Schur’s lemma, it must be a multiple of the
unit matrix, so it cannot be traceless. This proves (i}..{0 relates traces of length
p to traces of length — 2, so (ii) gives

< N

H— =——v={ | p=—v

tr w% =(tr1) g, (11.14)

>4\ /‘**{u >< )(}

tl" 'YN’YV’Y/)’YU =trl {g;wgpa — GupGve + g;wgl/p} ) (11.15)
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\4( RSN {
/N
+

-/
M
|

_|_

>8< IC

B RIS
5 \% _X (11.16)
BF

’3(‘ B +’¥'} e

The result is always th€p — 1)!! ways of pairing2p indices withp Kronecker
deltas. Itis evident that nothing depends on the direction of spinor lines, as spinors
are remembered only by an overall normalization factdr. The above identities

are in principle a solution of the spinor traces evaluation problem. In practice they
are intractable, as they yield a factorially growing number of terms in intermediate
steps of trace evaluation.

;t%o

11.2 FIERZING AROUND

The algorithm {1.19 is too cumbersome for evaluation of traces of more than
four or six~y-matrices. A more efficient algorithm is obtained by going to khe
basis ((1.8. Evaluation of traces of two and thréés is a simple combinatoric
exercise using the expansiahil(16. Any term in which a pair of,,,, indices gets

antisymmetrized vanishes:
% =0. (11.17)

That implies thal’s areorthogonal
RSN <
a; b =dgall | @ . (11.18)

Hereal! is the number of terms in the exbénsicﬂril(la which survive antisym-
metrization ((1.19. A trace of 3I'’s is obtained in the same fashion

\\4// alble!

N sl
b

1 1 1
:§(b+c—a), t:§(c+a—b), u:E(a—i-b—c)‘
As I'"s provide a complete basis, we can express a product of twatrices as a

sum over's, with extra indices carried by,,,,’s. From symmetry alone we know
that terms in this expansion are of the form

(11.19)




GroupTheory December 10, 2002

134 CHAPTER 11

The coefficients”,,, can be computed by tracing both sides withand using the
orthogonality relation11.18:

(11.20)

We do not have to consider traces of six or mbig as they can all be reduced to
threeI” traces by the above relation.

Let us now streamline the birdtracks. The orthogonality'sf(11.18 enables
us to introduce projection operators

(Pa)cd,Ef = altrl (’7[/“7#2 o .’yﬂa])ab (,yl"a cee 7“2’}/“1)(;(1
1 d« ,-- € 1 «
e e = Al (11.21)
N T e

\

The factortr 1 is a convenient (but inessential) normalization convention. It is
analogous to the normalization factoin (4.27):

L€
2 T P ()b

(11.22)

With this normalization, each spinor loop will carry factor 1)~!, and the final
results will have nar 1 factors.k, j ...are rep labels, not indices, and the repeated
index summation convention does not apply. Only the fully antisymmsiti¢n)
reps occur, so a single integer (corresponding to the number of boxes in the single
Young tableau column) is sufficient to characterize a rep.

For the trivial and the single-matrix reps, we shall omit the labels,

A e A e A e BN e
0, , S (11.23)

/ \ , v ) / \ \ ’

- D 2 - P 3
in keeping with the original definitionsl(.3. The 31" trace ((1.19 defines a

3-vertex
a
a b . \‘\\/
Y - (11.24)
/’ \\, T

Cc ~oL

\

C
which is non-zero only ifz + b + ¢ is even, and ifz, b andc satisfy the triangle
inequalitiega—0b| < ¢ < |a+b|. We appologize for using, b, ¢ both for theSO(n)
antisymmetric representations labels, and for spinor indiceslir)( but the latin
alphabet has only so many letters. It is important to note that in this definition the
spinor loop runs anti-clockwise, as this vertex can change sign under interchange
of two legs. For example, byl (.19

e
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A A

This vertex couples three adjoint representatidiis 13 of SO(n), and the sign
rule is the usual rule4(44) for the antisymmetry of; constants The general
sign rule follows from {1.19:

a b a b

T = (—1)stHtutus Y . (11.26)

The projection operatorB, (11.21) satisfy the completeness relatidng):
= > 2. (11.27)

This follows from the completeness ofs, used in deriving 11.20. We have
already drawn the left-hand side df1(.20 in such a way that the completeness
relation (L1.27) is evident:

ak~jb a\ /b
T
V=g N

I 1 )
PR

In terms of the vertex1(1.24 we get

i“| Z Y (11.28)

Inthis way we can systematically replace a string-ohatrices by trees of 3-vertices.

Before moving on, let us check the completeness?of P, projects spinor
® antispinor— antisymmetrica-index tensor rep o6O(n). Its dimension was
computed in§.21):

1 4 N ,
dy = tr Py = 80 = @ - (”) . (11.29)
rl-_- a

d, is automatically equal to zero for < «; this guarantees the correctness of
treating (L1.29 as an arbitrarily large sum, even though for a giweihterminates
ata = n. Tracing both sides of the completeness relatibh.Z7), we obtain a
dimension sum rule:

(tr1)? Zdaz< >(1+1)”2”. (11.30)

a=0
This confirms the results of Weyl and Brauérsf]: for even dimensions the
number of components &, soI”s can be represented by complk/? x2"/?]
matrices. For odd dimensions there are two inequivalent spinor reps represented by
[2(n=1)/2 % 2(n=1)/2] matrices (see sect1.7). This inessential complication has no
bearing on the evaluation algorithm we are about to describe.
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11.2.1 Exemplary evaluations

What have we accomplished? Iterating the completeness reldtioBd we can
make~y-matrices disappear altogether, and spin trace evaluation reduces to combi-
natorics of 3-vertices defined by the right-hand sideldf.{9. This can be done,

but is it any quicker than the simple algorithl(1§? The answer is yes: high
efficiency can be achieved by viewing a complicated spin trace3asjacoefficient

of sect.5.2. To be concrete, take an eighimatrix trace as an example:

<~

tr (Vu o VaysY YY) = :'j:@ . (11.31)

Such3n-j coefficient can be reduced by repeated application of the recoupling
relation 6.13

[ S = = -y, -
a —y b T b (11.32)
b : k

In the present context this relation is known as the Fierz idertit}. [It follows
from two applications of the completeness relation, a§ih3). Now we can redraw
the12-5 coefficient from (1.3 and fierz on

’

=2 | =
<.
b\ T dy

\

@. (11.33)

Another example is the reduction of a vertex diagram, a special case of the Wigner-
Eckhart theoremX.24):

*’ﬂsx Ja ¥
= -~ v \ ‘-
a _ Cc \ ! _ a a
- Z <. Je < : (11.34)
<y e  de - Tohdy <

b
As the final example we reduce a trace of 10 matrices:

1K ]‘I S b~ ¢ YO byde

1 A:‘ J = T \ '7\ '7\ !
N o =a N N N
i Q be 7 dpde
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=S 5 "¢ |
= <.
bed ! /‘,dbdC Qg

I S |
oy CU% e Ag ‘ (11.35)
€ TN TN £ i
PERE R

bed dpde! ) =

In this way, any spin trace can be reduced to a sum éveand3-; coefficients.
Our next task is to evaluate these.

11.3 FIERZ COEFFICIENTS

The 3-j coefficient in ((1.33 can be evaluated by substitutin1(19 and doing
“some” combinatorics

alblc! 1 n!
= . 11.
i. (sltlul)? sitlul (n —s —t —u)! (11.36)

s,t,u are defined in11.19. Note thatu + b+ ¢ =2(s+ ¢t +u), anda + b+ cis
even, otherwise the traces in the above formula vanish.

The6-; coefficients in the Fierz identityL(L.32 are not independent of the above
3-5 coefficients. Redrawing@ coefficient slightly, we can apply the completeness

relation (L1.2§ to obtain:

Interchangingj andk by the sign rule11.26, we express thé-j coefficient as a
sum oven3-j coefficients:

/»}”‘3 _ ’\//<\‘,Z(71)St+tu+usa@' (1137)

C (&
Using relations = a —u,s = b —u,a+t +u = a + b — u, we can replace?/]
the sum over: by the sum over:

%»ﬁ _ (l)ab<z> Zu:(*w (Z) <Z:Z> . (11.38)
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u ranges fron to a or b, whichever is smaller, and tlte;’s for low values ofa are
particularly simple
a

I 1 (=
< = m = d, (11.39)
/\/ /"T ’\/ /\’ - -

1 /I
N [ = S — a

—— /0 = (=1)"(n—2a)d (11.40)
. ) 1

1 s (n—2a)?> —n

Aar, 0P84y 7

RN 5 dq - (11.41)

. ) 2

Kennedy P5] has tabulated Fierz coefficients., b,c < 6. They are related to
6-7's by:

c b
b1 —— b! a\ /n—a
Fo= 2T e N gy . 11.42
g <p moraer()G) . me

11.4 6-J COEFFICIENTS

To evaluate 11.395 we need6-j coefficients for six antisymmetric tensor reps of
SO(n). Substitutions11.24, (11.27) and (1.19 lead to a strand-network B2
expression for &-j coefficient

(11.43)

Pick out a line in a strand, and follow its possible routes through the strand network.
Seven types of terms give non-vanishing contributions: 4 “mini tours”

S~ PASNPAN AN
4 . N /” \ ,” . N
" W 7 \ \ ¢ v W

/| " ! i \ ! | "

(O O (11.44)
PN T AN .
[ [ [ [ \ ,

\ ) \ I \

N NN < L

and 3 “grand tours”

(11.45)
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Let the numbers of lines in different tours bg ¢, t3,t4,t5,ts andt;. A non-
vanishing contribution to thé-; coefficient ((1.43 corresponds to a partition of
twelve strandssy, so, . . ., 512 iNt0 seven tours;, to, ..., tr

(11.46)

Comparing with {1.43, we see that eacky is a sum of twot;'s: s, = €y + 7,
sy = t1 +t7, etc Itis sufficient to specify oné; this fixes allt;'s. Now one stares
at the above figure and writes down

n t! le 35!

M(tl)( > - = t=ti Attty (11.47)
t) 1l ta! Hj:l a;!

(awell-known theorem states that combinatorial factors are impossible to ex{iin [

The () factor counts the number of ways of coloritigt- 5 + . .. + t7 lines with

n different colors. The second factor counts the number of distinct partitions of

lines into seven strands, ¢, . . ., t7. The last factor again comes from the projector

operator normalizations and the number of ways of coloring each strand and cancels

against the corresponding factor ihl(43. Summing over the allowed partitions

(for example, taking) < t; < s9), we finally obtain an expression for tlie;

coefficients:
A5 ()i
~\ TR ATH]

a3 7 t ) tiltaltsltyltsltglts!
tl:‘%” t5:a1+a3—2ka4+a6_t
t2:_w+t t6:a1+a242ra4+a5_t
tS:_a2+a4+a6+t t7:a2+a3+a5+a6_t

2 2
ty = —WH. (11.48)

The summation inl(1.49§ is over all values of, such that all the; are non-negative
integers. Naturally, thg-j (11.39 is a special case of tltej (11.49. The3-j's and
6-7's evaluated here, for all reps antisymmetric, should suffice in most applications.
The above examples show how Kennedy’s method produces-thimensional
spinor reductions needed for the dimensional regularizatigh [Its efficiency
for longer spin traces. Eachpair contraction produces oriiej symbol, and the
completeness relation sums do not exceed the number of pair contractions, so for
2p ~-matrices the evaluation does not excegédsteps. This is far superior to the
initial algorithm (11.16.
Finally, a learned comment to the wary of analytically continuing:iwhile
relying on completeness sums (de Wit and 't Ho6ff,[147] anomalies). Trouble
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could arise if, as we continued to low, the & > n terms in the completeness
sum (L1.27) gave non-vanishing contributions. We have explicitly noted that the
dimension3-; and6-j coefficients do vanish for any repkf> n. The only danger
arises from the Fierz coefficients](.32: aratio of6-j andd can be finite foj > n.
However, one is saved by the projection operator in the Fierz ideftity3®. This
projection operator will eventually end up in soéwg or 3-; coefficient withoutd

in the denominator (like in1(1.33), and the whole term will vanish fdr > j.

11.5 EXEMPLARY EVALUATIONS, CONTINUED
Now that we have explicit formulas for &t j and6-; coefficients we can complete

the evaluation of examples commenced in sétt2.1 The eighty-matrix trace
(11.33 is given by

N N oo
< LN LI
/ i 0 2
'\j:C‘_ <. @+ < @
O do O hdy
=n+n(n—1)(n—4)?, (11.49)
and the teny-matrix trace {1.35 by
e e
%8 = A (== ) A
LD do(/ K S\ d2(/ N S\

- - ( ) /’2\\\
éi; ‘ N é@;
dodg’ K da /‘,

I \
7

=n —|—n(n—/l)( —4)? —2n%*(n — 1)(n — 4)
—n(n —1)(n —2)(n — 4)*
=n® —n(n—1)(n—4)(n® - 5n+12). (11.50)

11.6 INVARIANCE OF v-MATRICES

The above discussion of spinors did not follow the systematic approach o8s&ct.
that we employ everywhere else in this monograph: start with a list of primitive
invariants, find the characteristic equations that they satisfy, construct projection
operators and identify the invariance group. In the present case, the primitive in-
variants arey,.,,, 6., and(v,)as.We could retroactively construct the characteristic
equation forQap.ca = (Vu)ad(Vu)es from the Fierz identity 11.32), but the job is
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already done and the eigenvalues are given b¥1.38 - (11.417. The only thing
that we still need to do is check th&©(n), the invariance group af,,, is also the
invariance group ofvy,)ab-

The SO(n) Lie algebra is generated by the antisymmetric projection operator
(8.7), or I'® in the v-matrix notation {1.9. The invariance conditiord(35) for

~y-matrices is
J‘ - \} — klw =0. (11.51)

To check whetheF(?) respects the invariance condition, we evaluate the first and
the third term by means of the completeness relatidn2g:

i1 I I 4

The minus sign comes from the sign rulel (2. Subtracting, we obtain

This already has the form of the invariance conditibh.61), modulo normalization
convention. To fix the normalization, we go back to definitioh%.§, (11.29,

(11.19:
A S
R SRR CEF EEEEIED T AR T

The invariance conditiorl(L.51) now fixes the relative normalizations of generators
in then-dimensional and spinor rep. If we tak& 1) for then-dimensional rep

(T = I~ = : I z (11.53)

then the normalization of the generators in the spinor rep is

1 . 1
(Tuy)ab - Z H = é["}/y,’}/ﬂ] . (1154)
a-<t---L-- b
The~-matrix invariance conditionl(l.51) written out in the tensor notation is
1
(Tws o] = 5ot = JuoTu) - (11.55)

If you prefer generator§r;),;, indexed by the adjoint rep index= 1,2,..., N,
then you can use spinor rep generators defined as

(T = J . A . (11.56)
a---<--- b 4a~ --J--b
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Now we can compute various casimirs for spinor reps. For example, the Dynkin
index, sect7.4, for the lowest dimensional spinor rep is given by

A [31-3
K = A = trl = 2 . (1157)

@ 8n—2) n-—2

From the invariance of,, follows invariance of all"®) . In particular, the invari-
ance condition fof'(?) is the usual Lie algebra conditios.@¢5 with the structure
constants given byl(l.25.

11.7 HANDEDNESS

Among the basesl(.8), Ff]}LQ,_M plays a special role; it projects onto a one-
dimensional space, and the antisymmetrization can be replaced by a pair of Levi-
Civita tensors§.29

12..n 12...n
rm — H—+ — “-l' . (11.58)
Al || ;';l(,

The corresponding clebsches are the generalizgtatrices

1 ‘n(n—
= || || =" Py oy (11.59)

The phase factor is, as explained in séct, only a nuisance which cancels away
in physical calculationsy* satisfies a trivial characteristic equation (uUs&8 and
(11.19 to evaluate this)

r LTI -5 RN, -
7= 0] A =0 =1, (11.60)
which yields projection operatorg.(L6)
1 1
Pi=-1+7), P.-=51-77). (11.61)

2 2
The reducibility of Dirac spinors does not affect the correctness of the Kennedy
spin traces algorithm. However, as the reduction of Dirac spinors is of physical
importance, we shall briefly describe the irreducible spinor reps. Let us denote the
two projectors diagrammatically by
1=P, +P_

= e e T . (11.62)

In even dimensions,y* = —y*~,, while in odd dimensions,,v* = v*~,, so
YWwPy = P-y

n even: | , (11.63)
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n odd: (11.64)

Hence, in the odd dimensions Dirgg matrices decompose into a pair of conjugate
[2(n=1)/2 5 2(n=1)/2] reps:

nodd: 4, =Py, Py + Py, P, (11.65)
and the irreducible spinor reps are of dimenstoh1)/2,

11.8 KAHANE ALGORITHM

For the case of 4 dimensions, there is a fast algorithm for trace evaluation, due to
Kahane §0].
Consider ay-matrix contraction

YW Ye - - VdVa = §|])<, (11.66)

and use the completeness relati@f.@7) and the “vertex” formulai1.39:

ds s

RN/
—— > = e (11.67)
Coae de T

Forn = 4, this sum ranges ovér = 0, 1,2, 3,4. A spinor trace is non-vanishing
only for even numbers of's, (11.19, so we dlstmgwsh the even and the odd cases
when substituting the Fierz coefficientisl(40:

T e

o= 4 , 11.68
< J RS { (,,[,,,, <N3} ( )

N D X O I 11.69)
< { > —_ } : (11
,( J — 1 \’ ,,,,(,,,, ,(,,U4,,,
The sign of the second term i11.68 can be reversed by transposing the's
(remember, the arrows on the spinor lines keep track of signs, f.24 and

(11.29)
NI L N NI A
o e
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But now the term in the brackets ii1.68 is just the completeness suhl(27),
and the summation can be dropped:

odd \ ’ \ ;
N B ~ B

N
Sty '//(\‘, l( B 7
u \\~’/
(11.71)
I
rule 1 : = =2
P BN . _ ,(,:Ai,,,
/
YV Ve -+ - VdVa = —2%d--- VeV

The same trick does not work fot1.69, because there the completeness sum has

o e e

1 | ) I ) 0 )
= N N N . 11.72
<“| ,/*\\{"+‘H2+\H4} ( )

,) ,,,,, ,( ,,,,,
H =— H , (11.73)
,( ,,,,, ,( ,,,,,

the sum ofy,7s . .. vq¢ and its transpose; . . . vy, has a two-term completeness

sum:
|1 K | 1]
“| + :i{ SR R } (11.74)
R S 1/4\‘, B

Finally, we can change the sign of the second term in§9 by using{~s, v.} = 0;

_even | 1]
s [T
—/
YEYaVb - - - VeVd = 2{VaYaVb - - - V6 VaVd} - (11.75)

This rule and the rulel(l.71) enable us to remove-contractions (“internal photon
lines”) one by one, at most doubling the number of terms at each step.These rules
are special ta = 4 and have na-dimensional generalization.
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Chapter Twelve

Symplectic groups

Symplectic grougp(n) is the group of all transformations which leave invariant a
skew symmetric quadratic forip, ) = f.p®q":

fab:_fba a,b:1,2,...n
= —~—a n even. (12.1)

The birdtrack notation is motivated by the need to distinguish the first and the second
index: it is a special case of the birdtracks for antisymmetric tensors of even rank
(6.57). If (p, q) is an invariant, so is its complex conjugdie ¢)* = f**p.qs, and

fab — fba

is also an invariant tensor. Matri4? = f,.f°® must be proportional to unity, as
otherwise its characteristic equation would decompose the defintimensional
rep. A convenient normalization is

fachb = (SZ
Indices can be raised and lowered at will, so the arrows on lines can be dropped.
However, omitting symplectic warts (the black half-circles) appears perilous, as

without them it is hard to keep track of signs. Our convention will be to perform all
contractions withf“® and omit the arrows but not the warts:

fab - a—v—b . (124)

All other tensors will have lower indices. The Lie group generat®ts,” will be

replaced by
(T3)ay = J—v— . (12.5)

The invariance condition4(35 for the symplectic invariant tensor is

VAN

(Ti)acfcb + fac(ﬂ)cb =0. (126)

A skew symmetric matrix,;, has the inverse inl¢.3 only if detf # 0. That is
possible only in even dimensions, Sp(n) can be realized only for even

v
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In this chapter we shall outline the construction%f(n) tensor reps. They are
obtained by contracting the irreducible tensor$6f(n) with the symplectic met-
ric f* and decomposing them into traces and traceless parts. The representation
theory forSp(n) is analogous in step-by-step fashion to the representation theory
for SO(n). This arises, because the two groups are related by supersymmetry, and
in chapterl3 we shall exploit this connection by showing, that all group-theoretic
weights for the two groups are related by analytic continuation into negative dimen-
sions.

12.1 TWO-INDEX TENSORS

The decomposition goes the same way assi0fn), sect.10.1 The matrix (0.8),

given by
T = 3 C (12.7)

satisfies the same characteristic equatidhg) as forSO(n). Now T is antisym-
metric, AT = T, and only the antisymmetric subspace gets decompaSgh)
2-index tensors decompose is

singlet: (Pabea = =fapfed = %3
antisymmetric: (Po)abea =  3(fadfve — facSod) — L fabfea
- _1
g MEB RS
symmetric: (P3)abed = 5(faafoe + facfoa) =

(12.8)
The SU (n) adjoint rep (0.19) is now split into traceless symmetric and antisym-
metric parts. The adjoint rep &fp(n) is given by the symmetric subspace, as only
P; satisfies the invariance conditiohZ.6):

Sl

Hence, the adjoint rep prOJect|on operator fgr(n) is given by

. }{ - I (12.9)

The dimension ofp(n) is

N =trPy= _nntl) (12.10)
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Young tableaux [ |®][ | = ° + [T ] + H
Dynkin labels (10...) x (10...)= (00...) + (010...) + (20...)
Dimensions n? = 1 + nlotl) g n=2)(nt1)
Dynkin indices 2 = 0 + 1+ "
Projectors :%3 C+I+{I_%3 C}

Table 12.1Sp(n) Clebsch-Gordan series fof @ V.

Remember that all contractions are carried ouf#y- hence, the extra warts in the

trace expression.

Dimensions of the other reps and the Dynkin indices (see 8e@tare listed in

table12.1
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Chapter Thirteen

Negative dimensions

A cursory examination of the expressions for the dimensions and the Dynkin indices
listed in tables.4and7.6, and in the tables of chapt@rchapterlOand chaptet 2,
reveals intriguing symmetries under substitutior> —n. This kind of symmetry

is best illustrated by the reps 6fU(n); if A stands for a Young tableau wifh
boxes, and\ for the transposed tableau obtained by flippigcross the diagonal

(ie., exchanging symmetrizations and antisymmetrizations), then the dimensions of
the two tableaux are related by

SU(n) : dx(n) = (=1)Pdx(—n) . (13.1)

This is evident from the standard recipe for computing$ib&n) rep dimensions,
sect.9.3, as well as from the expressions listed in the tables of ch&ptén all
cases, exchanging symmetrizations and antisymmetrizations amounts to replacing
n by —n.

Such relations have been noticed before; Parisi and Soufled{ave suggested,
that a Grassmann vector space of dimengioran be interpreted as an ordinary
vector space of dimensionan. Penrose 137 has introduced the term “negative
dimensions” in his construction &fU (2) ~ Sp(2) reps asSO(—2). King [9¢] has
proved that the dimension of any irreducible regspf ) is equal to that o6 O (n)
with symmetrizations exchanged with antisymmetrizatiemsgorresponding to the
transposed Young tableau), andeplaced by-n. Mkrtchyan [L14] has observed
this relation for theQC'D loop equations. With the advent of supersymmetries,
n — —n relations have become commonplace, as they are built into the structure
of groups such as the orthosympletic grap'p(b, f). Some highly nontrivial
examples ohr — —n symmetries for the exceptional groups]will be discussed
in chapter20.

Here, we shall prove the following:

Theorem 1 For anySU(n) invariant scalar exchanging symmetrizations and
antisymmetrizations is equivalent to replacingy —n:

SU(n) = SU(—n) . (13.2)
Theorem 2 For anySO(n) invariant scalar there exists the correspondiipgn)
invariant scalar (and vice versa), obtained by exchanging symmetrizations and an-

tisymmetrizations, replacing th€0O(n) symmetric bilinear invariand,;, by the
Sp(n) antisymmetric bilinear invarianf,;, and replacing: by —n:

SO(n) =Sp(—n),  Sp(n) = SO(~n) (13.3)

(the bars onSU, Sp, SO indicate transpositiorie. exchange of symmetrizations
and antisymmetrizations).
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Various examples ofi — —n relations, which we now give, cited in literature,
are all special cases of these general theorems whose proof is much simpler than
the published proofs for the special cases.

As we have argued in sed.2, all physical consequences of a symmetry (rep
dimensions, level splittingsetd can be expressed in terms of invariant scalars
(the equivalencel.?, (13.3 for arbitrary scalar invariants). The idea of the
proof is illustrated by the following typical computation: evaluate, for example, the
following SU (n) 9-j coefficient for recoupling of three antisymmetric rank-2 reps:

0w ©%) O
(0% € 00
00 O

+ —
:ng—nQ—n2+n,—n2+n+n—n2
=n(n—1)(n—23). (13.4)

Notice that in the expansion of the symmetry operators, the graphs with an odd
number of crossings give an even powergfand vice versa. If we change the
three symmetrizers into antisymmetrizers, the terms, which change the sign, are
exactly those with an even number of crossings. The crossing in the original graph,
which had nothing to do with any symmetry operator, appears in every term of the
expansion, and this does not affect our conclusion; an exchange of symmetrizations
and antisymmetrizations amounts to substitutior- —n. The overall sign is only

a matter of convention; it depends on how we define vertic8si’'s. The proof

for the generabU (n) case is even simpler than the above example:

13.1 SU(N)=SU(-N

~—

The primitive invariant tensors &fU (n) are the Kronecker tenséf and the Levi-
Civitatensoe,, ...q, . All other invariants ofSU (n) are built from these two objects.

A scalar 8n-j coefficient, vacuum bubble) is a number which, in birdtrack nota-
tion, corresponds to a graph with no external legs.
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As the directed lines must end somewhere, the Levi-Civita tensors can be present
only in pairs and can always be eliminated by the iden@it2®. An SU(n) 3n-
j coefficient, therefore, corresponds to a diagram made solely of closed loops of
directed lines and symmetry projection operators, like the exarfflé)(

Consider the graph corresponding to an arbitréiby(n) scalar, and expand all
its symmetry operators as ihf.4). The expansion can be arranged (in any of many
possible ways) as a sum of pairs of form

...+@i@+... (13.5)

with a plus sign if the crossing arises from a symmetrization, and a minus sign if it
arises from an antisymmetrization. Each graph consists only of closed leops,
definite power ofi, and thus uncrossing two lines can have one of two consequences.
If the two crossed line segments come from the same loop, then uncrossing splits
this into two loops, whereas if they come from two loops, it joins them into one
loop. The power of: is changed by the uncrossing:

(©-(© a9

Hence, the pairs in the expansidr3(5 always differ byn*!, and exchanging sym-
metrizations and antisymmetrizations has the same effect as substituting-n
(up to an irrelevant overall sign). This completes the proofl&fd).

Some examples of — —n relations forSU (n) reps:

(i) Dimensions of the fully symmetric rep$.(L3 and the fully antisymmetric
reps 6.21) are related by the gamma-function analytic continuation formula

n! p(—n+p—1)

(n—p)!

(13.7)

(i) Thereps .20 and (7.21) correspond to the 2-index symmetric, antisymmet-
ric tensors, respectively. Therefore, their dimensions in tldlare related
byn — —n.

(iii) The reps .44 and (7.45), see also tablé.6, are related by, — —n for the
same reason.

(iv) n — —n symmetries in tabl&.2.

(v) Dimension formula13.1).

132 SO(N) = SP(—N)

In addition tody ande ..., SO(n) preserves a symmetric bilinear invariaps, for
which we have introduced birdtrack open circle notatior8ii); Such open circles
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can occurinSO(n) 3n-j graphs, flipping the line directions. The Levi-Civita tensor
still cannot occur, as directed lines, starting onsaensor, would have to end on
ad tensor, which gives zero by symmetiyp(n) differs from SO(n) by having a
skew symmetric bilinear tensgf,;,, for which we have introduced birdtrack wart
notation in (2.1). A Levi-Civita tensor can appear in &p(n) 3n-j graph, but as

M — \/det7, (13.8)

(an exercise for the reader), a Levi-Civita can always be replaced by an antisym-

metrization
l l l = (detf)~

For anySO(n) scalar there exists a correspondifig(n) scalar, obtained by ex-
changing the symmetrizations and antisymmetrizatems$the 6,;,’s and f;'s in

the corresponding graphs. The proof that the two scalars are transformed into each
other by replacing: by —n, is the same as fofU(n), except that the two line
segments at a crossing could come from a new kind of loop, contadpj/gyor

fab's. In that case, equatioi .6 is replaced by

Se S © -

While now uncrossing the lines does not change the number of loops, chapging
to fup's does provide the necessary minus sign. This completes the pral.6f (
for the tensor reps o$O(n) andSp(n).

(N

(13.9)

Some examples O(n) = Sp(—n) relations:

(i) The SO(n) antisymmetric adjoint replQ.13 corresponds to th&p(n) sym-
metric adjoint rep12.9.

(i) Compare table?? and tablel0.1
(iii) Penrose [37 binors: SU(2) = SO(—2).

In order to extend the proof to the spinor reps, we will first have to invent the
Sp(n) analog of spinor reps. We turn to this task in the next chapter.
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Spinors’ Sp(n) sisters

Dirac discovered spinors in his search for a vectorial quantity which could be inter-
preted as a “square root” of the Minkowski 4-momentum squared,

(paya+p3yz+...) > =pr—ps—ps—....

Whathappens if one extends a Minkowski 4-momentumps, p», p1) into fermionic,
Grassmann dimensiory, ps, p2, p1,P—1,P—2,P—3, -+, P—n)? The Grassmann
sectomp; anticommute, and the gamma matrix relatives in the Grassmann dimensions
have to satisfy the Heisenberg algebra commutation relation

[’Yia’}/j] = fZ]]- )
instead of the Clifford algebra anticommutator conditiat.@), with the bilinear
invariant f;; = — f;; skew-symmetric in the Grassmann dimensions.

In chapterl2, we showed that the symplectic grofip(n) is the invariance group
of a skew-symmetric bilinear invariarff;. In sect.14.1, we investigate the conse-
quences of taking matrices to be Grassmann valued. We are led to a new family
of objects, which we call spinsters.  Spinsters play a role for symplectic groups
analogous, to that played by spinors for orthogonal groups. With the aid of spinsters,
we are able to compute, for example, all 3¢ and6-; coefficients for symmetric
reps of Sp(n). We find that these coefficients are identical with those obtained
for SO(n), if we interchange the roles of symmetrization and antisymmetrization
and simultaneously replace the dimensioby —n. In sect.14.2 we make use
of the fact thatSp(2) ~ SU(2), to show that the formulas f&#U (2) 3-j and6-j
coefficients are special cases of general expressions for these quantities, we derived
earlier.

This chapter is based on ref.]].

14.1 SPINSTERS
The Clifford algebra11.2 Dirac matrix element$y,, )., are commuting numbers.

In this section we shall investigate consequences of takjngp be Grassmann
valued.

(’Yu)ab(’%/)cd = _(’Yu)cd(’yll,)ab . (141)
The Grassmann extension of the Clifford algeldra. D) is
1
) = fuwl, w,v=12....,n,  mneven (14.2)

2
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The anticommutator gets replaced by a commutator, andbté:) symmetric
invariant tensog,,,, by theSp(n) skew-symmetric invariant tensgy,,.. Just as the
Dirac gamma matrices lead to spinor rep$af(n), the Grassmann valueg give
rise toSp(n) reps, which we shall call spinsters. Following thie(n) diagramatic
notation for the skew symmetric invariant tensd? (1), we represent the defining
commutation relationl4.2 by

- U (14.3)

For the symmetrized products gfmatrices the above commutation relations leads

to
123 p

JH%] B ﬁ% ’ (U%%] - (14.4)

As in chapterll, this gives rise to a complete basis for expanding products of

~ matrices.I"s are now the symmetrized productspimatrices:
123 a

aJ . (14.5)

Note that while for spinors thE(*) vanish by antisymmetry fdt > n, for spinsters
the'(*)’s are non-vanishing for ani, and the number of spinster basis tensors is
infinite. However, a reduction of a product bfy matrices involves only a finite
number ofT©, 0 < I < k. As the componentsy, )., are Grassmann valued,
spinster traces of even numbersyif are anticyclic

try,w = (’Yu)ab(%/)ba =—trv

<. ..
— —_— e — —
o, v Ny
YV Yo Yo = — TV Yo Yo Vu (14.6)
u v u v
N--/ N/
¢ A == A .
/7 N\ /N
9 p o p

In the diagrammatic notation we indicate the beginning of a spinster trace by a dot.
The dot keeps track of the signs in the same way as the &ag) for f,,,. Indeed,
tracing (L4.3 we have
try, vy = fuvtrl
— = A (24.7)

Moving a dot through & matrix gives a factor-1, as in (L4.6).
Spinster traces can be evaluated recursively, aslirv). For a trace of an even
number ofy’s we have

(SRR 5 Rl s e - ot

\\l:\// ‘\\_"_// \>+.'.+\// \\l (148)

1 \
7

.\777)777‘
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A trace of an odd number of's vanishes44]. Iteration of the equation14.9
expresses a spinster trace as a sum ofghe1)!! = (p — 1)(p — 3) ... 5.3.1 ways
of connecting the external legs wihi,,. The overall sign is fixed uniquely by the
position of the dot on the spinster trace:

|J|l:UU+M+M7 (14.9)

ey

and so on (se€l(.15).

Evaluation of traces of severhls is again a simple combinatoric exercise. Any
term in which a pair off,,, indices are symmetrized vanishes, which implies that
anyT'(®) with k > 0 is traceless. The’s are orthogonal:

€N A
al b = aldy A (14.10)

S8 oo

PN
I v
\ !

The symmetrized product af f,,,’s denoted by

1
- ZﬂE (14.11)

is either symmetric or skew-symmetric
___A

a = (-1 _a. (14.12)

—
A spinster trace of three symmeti$p(n) reps defines a 3-vertex:

|

=0 fora+b-+c = odd,

1 1 1
s=5b+e—a), t=glcta=b), u=;latb-c). (1413

As in (11.20, I'"'s provide a complete basis for expanding products of arbitrary
numbers ofy matrices

O =Y = o (14.14)
b .

The coupling coefficients inl@.14 are computed as spinster traces using the or-
thogonality relation14.10. As only traces of even numbersg$ are nonvanishing,
spinster traces are even Grassmann elements, they thus commute with ary; other
and all the signs in the above completeness relation are unambiguous.

The orthogonality ofl’s enables us to introduce projection operators and 3-
vertices

1~ o~ 1 ~.a-
e A (14.15)
A
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a b a b
e v

Y = L4 - (14.16)
o l

The sign facto—1)* gives a symmetric definition of the 3-vertex, séeg). It is
important to note that the spinster loop runs clockwise in this definition. Because
of (3.38), the 3-vertex has a non-trivial symmetry under interchange of two legs:

Y s+t+u Y (1417)

Note that this is different from](l.za - one of the few instances of spinsters and
spinors differing in a way which cannot be immediately understood as-an—n
continuation.

The completeness relatioh4.14 can be written

[IRRIE]

. (14.18)

We keep an arbitrary number ¢ to indicate the way in which the spinster trace
is to be taken; this keeps track of Grassmann signs.
The recoupling relation is derived as in the spinor c44e3?

< 774,>\/ /:. SN < /(‘,f\/
N
c% - =y 5 = - (14.19)
T b ,\’ N dy TN

Hered, is the dimension of the fully symmetrizéeindex tensor rep obp(n):

1
2
b :
b +b-1 -
“=(2 @ (7)o (7) e

The spinster recoupling coefficients ihl(34 are analogues of the spinor Fierz
coefficients in {1.39. Completeness can be used to evaluate spinster traces in the
same way as in example$1(.39 to (11.35.

The next step is the evaluation®j’s, 6-;'s and spinster recoupling coefficients.
The spinster recoupling coefficients can be expressed in terg’sfjust as in
(11.3%:

1 ,{};Jk}: =3 DT b (14.21)

/b
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The evaluation o8- j and6-; coefficients is again a matter of simple combinatorics:

@C:(_l)s+t+u<n+s+t+u_l>(5+t+“)!7 (14.22)

s+t+u sltlu!
o

a n+t—1 (—1)t#!
14.23
. \ Z ( ) tltoltslt g ts gt ’ ( )

with thet; defined in (1.48.

We close this section by acomment on the dimensionality of spinster reps. Tracing
both sides of the spinor completeness relatidhZ7) we determine the dimension-
ality of spinor reps from the sum rulé1.30

(tr1)2 = zn: <Z) =9,

a=0

Hence, Dirac matrices (in even dimensions) @&? x 2"/2], and the range of
spinorindices in11.3isa,b=1,2,...,2"/2.

For spinsters tracing the completeness relatign(g yields (the string ofy ma-
trices was indicated only to keep track of signs for ok

,\f:‘\) /\,\4\)_ —vbJFn = Zdb (14.24)

o o b "

(tr1)2:Z(n+§j_1).

c=o0

The spinster trace is infinite. This is the reason why spinster traces are not to be
found in the list of the finite-dimensional irreducible reps$f(n). One way of
making the traces meaningful is to note that in any spinster trace evaluation only
a finite number ofi’'s are needed, so we can truncate the completeness relation
(14.18 to terms0 < b < byee- A more pragmatic attitude is to observe that the
final results of the calculation are thej and6-; coefficients for the fully symmetric
reps ofSp(n), and that the spinster algebrB4(2) is a formal device for projecting
only the fully symmetric reps from various Clebsch-Gordan serieSfdn.).

The most striking result of this section is that thg and6-; coefficients are
just theSO(n) coefficients evaluated for — —n. The reason for this we already
understand from chaptés.

When we took the Grassmann extension of Clifford algebra®4rt), it was not
too surprising that the main effect was to interchange the role of symmetrization
and antisymmetrization. All antisymmetric tensor rep$6f(n) correspond to the
symmetric rep ofSp(n). What is more surprising is that if we take the expression
we derived for theSO(n) 3-j and6-; coefficients and replace the dimensioiy
—n, we obtain exactly the corresponding result$@(n). The negative dimension
arises in these cases through the relafiofl) = (—1)*("**~!), which may be
justified by analytic continuation of binomial coefficients by the Beta function.
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14.2 RACAH COEFFICIENTS

So far, we have computed tltej coefficients for fully symmetric reps dip(n).
Sp(2) plays a special role here; the skew symmetric invarjgfit has only one
independent component, and it must be proportionai#ta Hence, Sp(2) ~
SU(2). The observation tha8U (2) can be viewed a§O(—2) was first made by
Penrose]37], who used it to comput8U (2) invariants using “binors”. His method
does not generalize t80(n), for which spinors are needed to project onto totally
antisymmetric reps (for the case= 2, this is not necessary as there are no other
reps). ForSU(2), all reps are fully symmetric (Young tableaux consist of a single
row), and our6-;5's are all the6-;’s needed for computingU (2) ~ SO(3) group
theoretic factors. More pedanticallyU (2) ~ spin(3) ~ SO(3). Hence, all the
Racah [35 and Wigner coefficients, familiar from the atomic physics textbooks.
are special cases of our spinor/spinsgtars. Wigner's3-j symbol [L11]

(fl)jl —j2+M
v2J +1

is really a Clebsch-Gordon coefficient with ddj as a normalization factor.
This may be expressed more simply in diagramatic form

(gnl,l ngLQ —JJLI) =

(j1j2mama|JM) (14.25)

Z'phase

J1
(zflh 332 —JM) = 2k >
A l@ 2j»

where we have not specified the phase convention on the righthand side as in the cal-
culation of physical quantities such phases cancel. Factors of 2 appear because our

2) (14.26)

integersy, b,... = 1,2,...countthe numbers &fUU (2) 2-dimensional repsO(3)
spinors), while the usugl, j»,... = 3,1, 2, ... labels correspond t60(3) angu-
lar momenta.

It is easy to verify (up to a sign) the completeness and orthogonality properties
of Wigner's3-j symbols
SN doJ 20 2J 2k
N 5
Z(QJJr 1)\)/ (s 92, ar) Gy 72, ar) ~ Z o

J,M J @ 2J2 2j2

2j1
= 5] ~ 5m17n’15m2m'2 (1427)

1 o 2
Z A(jl 2 7)) (jl j2 ]{4) L1 2 25,
\\)/ m1 mso m1 mso 2]1
&

O Onimr 6y
—~ 14.28
doy 2J 2J +1 ( )

The expressionl1@4.22 for our 3-j coefficient withn = 2 gives the expression
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usually written as\ in Racah’s formula fo(, ! ),

! oy (GG+k+1+1)!
A, k1) - (_1)J+k+l@ _ R (o s ey (14.29)

Wigner's 6-; coefficients are the same as ours, except that the 3-vertices are nor-
malized as in14.29

2k, 2Ky
1 ppm——— ) )
e Y
\3Y \3/ 2k,
which gives Racah’s formula usin@4.23, with n = 2:

{ﬁ 2 ﬁa} = [A(jrkaks) Ak joks) A(k1kajs) A(j1253)] 2

(14.30)

(=) +1)!

2 (t —J1—Jo — J3)i(t < j1 — ko — k3)!(t — k1 — j2 — ks)!(t — kv — k2 — j3)!(j1 + j2 — k1 + k2 — £)!(j2

t

14.3 HEISENBERG ALGEBRAS

The most interesting question raised by our labors is, what are spinsters? A sceptic
would answer, that they are merely a trick for relati$ig(n) antisymmetric reps
to Sp(n) symmetric reps. That can be achieved without spinsters: indeed, Pen-
rose [L37 had observed many years ago, t15&?(—2) yields Racah coefficients
in a much more elegant manner than the usual angular momentum manipulations.
In chapterl3, we have also proved that for any scalar constructed from tensor in-
variants,SO(—n) ~ Sp(n). This theorem is based on elementary properties of
permutations and establishes the equivalence betdgaefficients forSO(—n)
andSp(n), without reference to spinsters or any other Grassmann extensions.
Nevertheless, spinsters are the natural supersymmetric extension of spinors. They
do not appear in the usual classifications, because they are infinite dimensional reps
of Sp(n). However, they are not as unfamiliar as they might seem; if we write the
Grassmanniary matrices forSp(2D) asv, = (p1,p2,...Pp,%1,%2...xp) and
choosef,,,, of form

f= (_01 é) , (14.32)

the defining commutator relatiori4.2) is the defining relation for a Heisenberg
algebra, except for a missing factoriof

[pi,(I}j] :5”1, Z,]: ].,2,D (1433)
It is well known that Heisenberg algebras have infinite dimensional reps, so the
infinite dimensionality of spinsters is no surprise. If we include an extra factor of
1 into the definition of the “momenta” above, we find that spinsters resemble an
antiunitary Grassmann-valued rep of the usual Heisenberg algebra. If there is any
significance in these observations, it would be intriguing to consider relationship
between superspace and the spinor/spinster reps of the orthosymplectic groups.
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Chapter Fifteen

SU (n) family of invariance groups

SU (n) preserves the Levi-Civita tensor, in addition to the Kronecdkefrsect.9.8.

This additional invariant induces non-trivial decompositioné/éf.) reps. In this
chapter, we show how the theory 8t/ (2) reps (the quantum mechanics textbooks'’
theory of angular momentum) is developed by birdtracking; $6&¢3) is the unique
group with the Kronecker delta and a rank-three antisymmetric primitive invariant;
that SU(4) is isomorphic toSO(6); and that forn > 4, only SU(n) has the
Kroneckers and rankr antisymmetric tensor primitive invariants.

15.1 REPRESENTATIONS OF SU(2)

For SU(2), we can construct an additional invariant matrix which would appear to
induce a decomposition of ® 7 reps

a c 1 ac b ¢
Eb7 4= 56 T Ebd = J I I A . (15.1)

However, by 6.28 this can be written as a sum over Kronecker deltas and is not
an independent invariant. So what deé$do? It does two things; it removes the
distinction between a particle and an antiparticlegifransforms as a particle, then
e%q, transforms as an antiparticle), and it reduces the reggR) to the fully
symmetric ones. Consider® n decomposition{.4)

[1®[2]=[1][2]+ e

matuistss MRS
2-3 1

. 2.
2=,
2 * 2

The antisymmetric rep is a singlet

Bl S | DR (15.3)

Now consider thexV? and ®V* space decompositions, obtained by adding
successive indices one at a time:

—— T=

ESNEE T =




GroupTheory December 10, 2002

162 CHAPTER 15

(1] x [2] x [3]=[1[2[3] +[1] +[3]

—= I ?:':
= 1rE*‘ﬂE

[1] < [2] x [3] x [4]=[1]2[3[ 4]+ [1[4] + [3[4] +[1][2] + e + ». (15-4)

This is clearly leading us into the theory 60(3) angular momentum addition,
described in any quantum mechanics textbook. We shall, anyway, persist a little
while longer, just to illustrate how birdtracks can be used to recover some familiar
results.

The projection operator fon-index rep is

1
Pp=2 ﬂE . (15.5)

The dimension isr P,,, = 22HNEH2L-CHm=1) _ ), 41 (usuallym = 2j, where
jisthe spin of the rep). The prOJectlon operaton() for the adjoint rep (spin 1) is

YCTT DO e

(This can be rewritten as using (5.3).
The quadratic casimir for the defining rep is

— =T (15.7)

TI-X-SC-5

we can compute the quadratic casimir for any rep

Using

:n<§+"_1> "t (15.9)

A
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The Dynkin index fom-index rep is given by
_ Cy(n)d,  n(n+1)(n+2)
=5 0hm 24
We can also construct Clebsch-Gordan coefficients for various Kronecker prod-
ucts. For example), ® A; is given by

1
2

. (15.10)

wg E (15.11)
b B I

foranyU(n). For SU(2) we have (5.3, so
E . (15.12)
—

(1[2]-[p-1 x [p]=[1][2[-[p] +[1]2]-[p-2

(15.13)

Actually, we have already given the complete theon$'6f(3) angular momentum
in chapterl4, by giving explicit expressions for all Wigner peoefficients (Racah
coefficients), so we will not pursue this further here.

15.2 SU(3) ASINVARIANCE GROUP OF A CUBIC INVARIANT

From experiments, we know that the hadrons are built from quarks and antiquarks,
and that the hadron spectrum consists of

(i) mesons, each built from a quark and an antiquark;

(ii) baryons, each built from 3 quarks or antiquarks in a fully antisymmetric color
combination;

(iif) no exotic statesie. no hadrons built from other combinations of quarks and
antiquarks.

We shall show here that for such hadronic spectrum, the color group can be only
SU(3).

In the group theoretic language, the above three conditions are a list of the prim-
itive invariants (color singlets) which defines the color group:

(i) One primitive invariant i, so the color group is a subgroup 8t/ (n).



GroupTheory December 10, 2002

164 CHAPTER 15

(i) There is a cubic antisymmetric invariafit* and its dualf,p..

(iii) There are no further primitive invariants. We interpret this to mean that any
invariant tensor can be written in terms of the tree contraction,gf** and

fbca-

In the birdtrack notation,

fobe = /t\ s fabe = A (15.14)
a b a b

fape and fo0¢ are fully antisymmetric:

/é\ = —}*\ . (15.15)

We can already see that the number is at least three3, as otherwisg,;,. would
be identically zero. Furthermoré’s must satisfy a normalization condition

4 fode = a8

-»-O-»- —a——. (15.16)

(For convenience we set= 1 in what follows.) If this were not true, eigenvalues
of the invariant matrix~§ = £t f,.4. could be used to split the-dimensional rep
in a direct sum of lower dimensional reps; but thedimensional rep would not be
the defining rep (we would have several kinds of mesons).

®@V? states According to 7.4), they split into symmetric and antisymmetric sub-
spaces. The antisymmetric space is reduced&o% by the f¢*¢ invariant:

B DL G D) d
Aw, = éfabef“d + {Aab,*! = fare '} . (15.17)

The symmetric subspace is not split by #fag. £°°¢ invariant, which vanishes due to
its antisymmetry. The simplestinvariant matrix on the symmetric subspace involves
four f’s:

f

a C
Kab,Cd - b eg 9 q - faeffbhgfcehfdfg . (1518)

h
As the symmetric subspace is not split, this invariant must have a single eigenvalue

Kap,“ = BSa, " =8 : (15.19)



GroupTheory December 10, 2002

SU(N) FAMILY OF INVARIANCE GROUPS 165

Tracing K., ** fixes 3 = -2;. The assumption, that is not an independent

invariant, means that we do not allow the existence of exgtjg hadrons. The re-
quirement, that all invariants be expressible as trees of contractions of the primitives

<

X4 +B:><+C:>->-(:, (15.20)

leadstotherelatiori6.19. Theleft-hand side is symmetric under index interchange
a <+ bsoC =0andA = B.
V @ V states The simplest invariant matrix that we can construct frfmis

1a C
Gl = X =1 (15.21)
' Cp d

By crossing (5.19, G satisfies a characteristic equation

1
- — (14T
G n+1{ + T}
s 1 —_—
I ‘_n—&-l{ +} C} (15.22)
On the traceless subspaded), this leads to
1
2 P, = 15.2
(€ ) =0, (15.23)

with eigenvalues-1//n + 1. V ® V contains the adjoint rep, so at least one of the
eigenvalues must correspond to the adjoint projection operator. We can compute
the adjoint rep eigenvalue from the invariance conditiéB9) for fo<d:

%+\‘ i +\’i\o. (15.24)

Contracting withf®°?, we find

ROSS
)
P4G = f%PA . (15.25)

Matching the eigenvalues, we obta\j};h{r:1 = % son = 3. Quarks can come in
three colors only, and,,;.. is proportional to the Levi-Civita tenseg,,. of SU(3).
The invariant matribxG is not an independent invariant; thén — 3) /2 dimensional
antisymmetric spacelb.17) has dimension zero, $& can be expressed in terms of

Kronecker deltas:
2

0=Au, -Gt . (15.26)
We have proven that the only group that satisfies the conditions (i) - (iii), at the
beginning of this section, iISU(3). Of course, it is well-known that the color group
of physical hadrons iU (3), and this result might appear rather trivial. That it is
not so will become clear from the further examples of invariance groups, such as
the G, family of the next chapter.
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15.3 LEVI-CIVITA TENSORS AND SU(N)

In chapterl2, we have shown that the invariance group for a skew-symmetric invari-
antfe*is Sp(n). In particular, forf®® = 2%, the Levi-Civita tensor, the invariance
group isSU(2) = Sp(2). In the preceding section, we have proven that the in-
variance group of a skew-symmetric invarigiit® is SU(3), and thatf**° must be
proportional to the Levi-Civita tensor. Now we shall show that fét-¢ with r
indices, the invariance group BU(r), and f is always proportional to the Levi-
Civita tensor.r = 2 andr = 3 cases had to be treated separately, because it was
possible to construct fronfi*® and f*¢ tree invariants on the x ¢ — g x ¢ space
which could reduce the grougU (n) to a subgroup. Fofe®, n > 4 this is, indeed,
what happensSU(n) — Sp(n), for n even.

Forr > 4, we assume here that the primitive invariants &feand the fully
skew-symmetric invariant tensors

fa,lag...ar :m’ ’ r > 3 .
falag...a,, = m . (1527)

A fully antisymmetric object can be realized only+#n> r dimensions. By the
primitiveness assumption

e
1’@'{ - n2_0‘1 :]: etc (15.28)

ie., various contractions of's must be expressible in terms &§, otherwise there
would exist additional primitives. f(invariants themselves have too many indices
and cannot appear on the right hand side of the above equations.)

The projection operator for the adjoint rep can be built only fagf; andd|d; .
From sect9.8, we know that this can give us only tt#/(n) projection operator
(7.8), but just for fun we feign ignorance and write

2){ A{:+b} C} . (15.29)

The invariance conditior6(58 on f,;.... yields

Contracting from the top, we gét= 1+ bn. Antisymmetrizing all out legs, we get

0= . (15.30)
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Contracting with; from the side, we get = n — 7. As in (6.31), this defines the
Levi-Civita tensor inn dimensions and can be rewritten as

% = naH . (15.31)
(The conventional Levi-Civita normalization isx = n!). The solutionb = —1
means thafl” — i is tracelessie., the same as for th8U (n) case considered in
sect.9.8 To summarize: the invariance condition forggs... .. to be proportional
to the Levi-Civita tensor (becausesindimensions, a Levi-Civita tensor is the only
fully antisymmetric tensor of rank), and the primitives;’, fqs...q (rankn) have

SU (n) as their unique invariance algebra.

15.4 SU(4) - SO(6) ISOMORPHISM

Inthe preceding sections, we have shownthatif the primitive invariané§'arg,,  cq .
the corresponding Lie group is the defining repSdf (n), and fu;.. q iS propor-
tional to the Levi-Civita tensor. However, there are still interesting things to be said
about particulaiSU (n)'s. As an example, we will establish tig/(4) ~ SO(6)
isomorphism.

The antisymmetricSU (4) rep is of dimensionl, = 473 = 6. Let us introduce

clebsches

A :1(7 Ja(1)h, p=1,2,....6. (15.32)

(4 is a normalization chosen so thgs will have the Dirac matrix normalization.)
The Levi-Civitatensorinduces a quadratic symmetric invariant on the 6-dimensional

space
“ %
4(7@ *ebaca()™ . (15.33)
This invariant has an inverse
g" = g = 6 . (15.34)
The factor 6 is the normalization factor, fixed by the conditjgng”” = 47
G g”’ = -

- ) e e

=6
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(n—=3)(n—2)
=6 D) g g
= = ) . (15.35)

Here we have use® (29, (15.32, and the orthonormality for clebsches

et — i
(7)™ (V) pa = 407, . (15.36)

As we have shown in chapt&f, the invariance group for a symmetric invarigpi
is SO(d ). One can check that the generators for the 6-dimensional rép ¢f),
indeed, coincide with the defining rep generator§'6f(6), and that the dimension
of the Lie algebra is in both cases 15.

The invariance conditior5(58) for the Levi-Civita tensor is

obm:ﬁl (15.37)
n
ForSU(4) we have
N R —
+ e + ¢ + = j 1 . (15.38)
+] \q Y'Y ] YVYY }

Contracting with(~y,,)2*(7,,)°?, we obtain

-
<

e H

(’7#) (’Vl/)ab + ('Y,u)ad 'YV 2569#1} . (1539)

Here(v,)as = (7)Yeacan, and we recognize the Dirac equatidri(4). So the
clebschesl(5.32 are, indeed, the-matrices forSO(6) (semi)spinor repsl(L.65.
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Chapter Sixteen

G, family of invariance groups

In this chapter, we begin the construction of all invariance groups which posses a
symmetric quadratic and an antisymmetric cubic invariant in the defining rep. The
resulting classification is summarized in figh.1. We find that the cubic invariant
must satisfy either the Jacobi relatidir6(7) or the alternativity relation1(6.17). In
the former case, the invariance group can be any semi-simple Lie group in its adjoint
rep; we pursue this possibility in the next chapter. The latter case is developed in
this chapter; we find that the invariance group is eitbéX(3) or the exceptional
Lie groupG,. The problem of evaluation ¢fn — j coefficients forGGs is solved
completely by the reduction identityt§.14. As a byproduct of the construction,
we give a proof of the Hurwitz’s theorem, set6.6 We also demonstrate that the
independent casimirs faFs are of order 2 and 6, by explicitly reducing the 4-th
order casimir in sectl6.5

Consider the following list of primitive invariants:

(i) o, so the invariance group is a subgroupSf (n).

(i) symmetricg® = ¢"?, guy = gra, SO the invariance group is a subgroup of
SO(n). We take this invariant in its diagonal, Kronecker delta farm

(iii) a cubic antisymmetric invarianf,p..

Primitiveness assumptioaquires that all other invariants can be expressed in terms
of the tree contractions a@f,;, , fape-

In the diagrammatic notation, one keeps track of the antisymmetry of the cubic
invariant by reading the indices off the vertex in a fixed order:

fabc = /k = _é = _facb- (161)

The primitiveness assumption implies that the double contraction of a pdis of
is proportional to the Kronecker delta. We can use this relation to fix the overall
normalization off’s:

fabcfcbd = a(sad

For convenience, we shall often get= 1 in what follows.
The next step, in our construction, is to identify all invariant matrices &i? and
construct the Clebsch-Gordan series for decomposition of 2-index tensors. There

(16.2)
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primitives: * JR—

two relations one relation

assume:
no relations

o o

Jacobi alternat|V|ty

Bo aToca -

any adjoint representation

quartic primitive no quartic primitive

SuUn), SOM). Sgin) E, family

Figure 16.1 Logical organization of chapters 16—17. The invariance groups SO(3)
and G are derived in this chapter, while the Es family is derived in chap-

are six such invariants: the three distinct permutations of indices;6f,;, and

the three distinct permutations of free indicesfgf. f..q. For reasons of clarity,

we shall break up the discussion into two steps. In the first step B&df.we
assume that a linear relation between these six invariants exists. Pure symmetry
considerations, together with the invariance condition, completely fix the algebra of
invariants and restrict the dimension of the defining space, to either 3 or 7. In the
second step sect6.3 we show that a relatioassumedn the first step must exist
because of the invariance condition.

Remark. Quarks and hadrons. An example of a theory, with above invariants,
would be QCD with the hadronic spectrum consisting of following singlets:

(i) quark-antiqguark mesons
(i) mesons built of two quarks (or antiquarks) in a symmetric color combination

(iii) baryons built of three quarks (or antiquarks) in a fully antisymmetric color
combination

(iv) no exotics,ie. no hadrons built from other combinations of quarks and anti-
quarks.

As we shall now demonstrate for this hadronic spectrum, the color group is either
SO(3), with quarks of three colors, or the exceptional Lie gra@up with quarks
of seven colors.
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16.1 JACOBI RELATION

If the six invariant tensors mentioned above are not independent, they satisfy a
relation of form

0=4 +B)) C+C><+DX+E>—<+F:><. (16.3)

Antisymmetrizing a pair of indices yields

0— A’I n E>—< n F/I: , (16.4)

and antisymmetrizing any three indices yields

0=(E+F) . (16.5)

If the tensor itself vanisheg,'s satisfy theJacobi relation(4.47)

If A’ £ 0in (16.4), the Jacobi relation relates the second and the third term

0= I + EH (16.7)

The normalization conditionl@.2 fixes B’ = —1.

>—< - I (16.8)

Contracting withd,;, we obtainl = (n — 1)/2, son = 3. We conclude that if
pair contraction off’s is expressible in terms @fs, the invariance group iSO(3),
and f,;. is proportional to the 3-index Levi-Civita tensor. To spell it out; in 3
dimensions, an antisymmetric rank-3 tensor can take only one vales + f123
which can be set equal tb1 by appropriate normalization conventiatt(2).

If A = 0in (16.4), the Jacobi relation is the only relation we have, and the
adjoint rep of any simple Lie group is a possible solution. we return to this case in
chapterl?.

16.2 ALTERNATIVITY AND REDUCTION OF F-CONTRACTIONS

If the Jacobi relation does not hold, we must h&/e= —F’ in (16.5 and (L6.4)

takes form
H+ I a4 I . (16.9)
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Contracting withd,;, fixes A” = 3/(n — 1). Symmetrizing the top two lines and
rotating the diagrams b§0°, we obtain thelternativity relation

-5 C¢OD) (16.10)

The name comes from the octonian interpretation given in 4éck. Adding the

two equations, we obtain
I+>_<ni1{_2><+) C} (16.11)

The Clebsch-Gordon decomposition®?/?2 follows:
=—> C 1[ D
TL

n? =1+ W ”(” 3 (16.12)
By (16.9, the invariant is reducible on the antisymmetric subspace. By

(16.10, itis also reducible on the symmetric subspace. The only indeperidgnt
invariant is)—( which, by the normalizationl1@.2), is already the projection
operator which projects the antisymmetric 2-index tensors onte-tienensional
defining space. The dimensions of the reps are obtained by tracing the corresponding
projection operators.

The adjoint repI of SO(n), is now split into two reps. Which one is the
new adjointrep? That, we determine by considerig®, the invariance condition
for fape. Ifwe take)—( to be the projection operator for the adjoint rep, we again
get the Jacobi condition witfO(3) as the only solution. However, if we assume
that the last term in1(6.12 is the adjoint projection operator

DCIE < o

the invariance condition becomes a non-trivial condition:

EJEEQ soss

The last term can be simplified b$§.9 and ©.19
3 = -2 =3 +2— 7 .
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Substituting back into1(6.19), yields

B el By

Expanding the last term and redrawing the equation slightly, we have

This equation is antisymmetric under interchange of the left and the right index
pairs. Hence2/(n — 1) = 1/3, and the invariance condition is satisfiedly for
n = 7. Furthermore, the above relation gives ushereduction identity

:% dﬂQ# +® . (16.15)

This identity is the key result of this chapter: it enables us to recursively readuce

contractions of products éffunctions and pairwise contractiofi,. f.q4., and thus

completely solves the problem of evaluating any casimirey coefficient ofGs.
The invariance conditionl@.14) for f,;. implies that

> DC 3539

The “triangle graph”, for the defining rep, can be computed in two ways, either by
contracting 16.10 with f.;., or by contracting the invariance conditioh6(14

with d,45:
4—n 5—n
é n—l/k ) /k (16.17)

So, the alternativity and the invariance conditions are consistémtif3)(n—7) =
0, ie. onlyfor 3 or 7 dimensions. In the latter case, the invariance group is the
exceptional Lie groups,, and the above derivation is also a proof of Hurwitz’'s
theorem, see sect6.5

In this way, symmetry considerations together with the invariance conditions,
suffice to determine the algebra satisfied by the cubic invariant. The invariance
condition fixes the defining dimension to= 3 or 7. Having assumed only that
a cubic antisymmetric invariant exists, we find that if the cubic invariant is not
a structure constant, it can be realized only in 7 dimensions, and its algebra is
completelydetermined. The identityl6.14 plays the role analogous to that the
Dirac relation{~y,, v, } = 2g¢,.,I plays for evaluation of traces of products of Dirac
gamma-matrices, described above in chapieiJust as the Dirac relation obviates
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need for explicit reps of/’s, (16.14 reduces any - f - f contraction to a sum of
terms linear inf and obviates any need for explicit constructiory/ .

The above results now enable us to compute any group-theoretic weigHit for
in two steps. First, we replace all adjoint rep lines by the projection operators
P4 (16.13. The resulting expression contains Kronecker deltas and chains of
contractions off ., which can then be reduced by systematic application of the
reduction identity {6.15.

16.3 PRIMITIVITY IMPLIESALTERNATIVITY

The only detail, which remains to be proven, is the assertion that the alternativity
relation (L6.10 follows from the primitiveness assumption. We complete the proof
in this section. The proof is rather inelegant and can probably easily be streamlined.
If no relation (L6.3 between the thre¢ - f contraction is assumed, then by the
primitiveness assumption the adjoint rep projection oper@tois of the form

){A{I+B)—C+0:I}. (16.18)

Assume that the Jacobi relation does not hold; otherwise this immediately reduces
to SO(3). The generators must be antisymmetric, as the group is a subgroup of
SO(n). Substitute the adjoint projection operator into the invariance condition
(6.58 (or (16.19) for fupe:

0= :I/EE+B)—EE+C:I£E. (16.19)

Resymmetrize this equation by contracting w; — . This is evaluated

expanding with§.19 and using a relation due to the antisymmetry/,of.:

I EE =0. (16.20)
The result is:
0=—:IEE+C;B)—EE+B:I£E (16.21)

Multiplying (16.19 by B, (16.2]) by C' and subtracting, we obtain

oo o s

We return to the casB + C' = 0 below, in (L6.29.
If B+ C # 0, by contracting withf,,;. we getB — C/2 = —1, and

0= :IEE - )—EE (16.23)
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To prove that this is equivalent to the alternativity relation, we contract@:,
expand the 3-leg antisymmetrization, and obtain

A2 10 1%

I - QI )—C + Q}C: . (16.24)

The triangle subdiagram can be computed by addifgl® and (6.21)

o(3+0){§)—EE+:|£E}

and contracting with—C. The result is

A -1 L @s.29

Substituting into {6.24, we recover the alternativity relatiod§.10. Hence, we
have proven that the primitivity assumption implies the alternativity relation for the
caseB + C # 0in (16.22.

If B+ C =0, (16.19, becomes

e pyipey :IEE 1620

Using the normalization/(37) and orthonormallt conditions, we obtain

/A\ _ S = Z (16.27)
}{ 15 —n 15 {_I - >_<}(16'28)

4dn(n — 3)
N= a@ 5 (16.29)

The remaining antisymmetric rep
1
> L=< ;}C
{ I ] I } (16.30)
L) —-n - n

% - —L)”) . (16.31)

has dimension
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The dimension cannot be negative,&e 7. Forn = 7, the projection operator
(16.30 vanishes identically, and we recover the alternativity relatidghi0.

The Diophantine conditionl©.37) has two further solutions: = 5 andn = 6.

Then = 5is eliminated by examining the decomposition of the traceless symmet-
ric subspace in1(6.129), induced by the invarian®) = I By the primitiveness

assumptionQ? is reducible on the symmetric subspace

AT e HIE D G

0=(Q*+ AQ+ B)P,.
Contracting the top two indices with,;, and(7;) ., we obtain
13—n 5 6—n
i - = I)P,=0. 16.32
(Q 20— 12 2(2+n)(9n)) 2 ( )
Forn = 5, the roots of this equation are rational and the dimensions of the two reps,

induced by decomposition with respect®p are not integers. Hence,= 5 is not
a solution. We turn to the case= 6 next.

|
16.4 SEXTONIANS :not rechecked yet:

For the remaining. = 6 case the equatior1§.30 reduces to

<Q + ;) QP =0 (16.33)

with the associated projection operators

P, = { +2 } Py, dy =12 (16.34)

Po=-2 P, d_ =8 (16.35)

The adjoint 0.3) and the antisymmetri®(42 projection operators are given by

> CHIE >
H:%{I_2ZI_>_<}’ d=1 (16.36)

Also =0.

The existence of a 1-dimensional rep implies that= 6 owns an associated
skew-symmetric rank-2 invariant

}C - fé} C (16.37)

Here the normalization is chosen so that the warts

—_— = ——VvV (16.38)


Predrag Cvitonavic
not rechecked yet:

Predrag Cvitonavic
not rechecked yet:
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satisfy the fundamental wart identifg wart is a symplectic invariant)

—_—,—A — —

(16.39)

This invariant projects onto the 1-dimensional subsp&a6e3@ and is thus orthog-
onal to the defining and the adjoint reps

—()>=—A)-=o0 (16.40)

The cubic invariant can now be altogether eliminated in favor of the symplectic one:
first we rewrite (6.39 as

I ><-+3 C

Antisymmetrizing the top two lines yields

H:%{IJFI} (16.41)

With this substitution the adjoini6.36 and the two symmetricl@.39 rep projec-
tion operators are given by

>0 C
{0 )
P_:%{ - }{I—%) C} . (16.42)

(The invariance condition O is satisfied trivially).

The 1-dimensional rep also satisfies the invariance condition, so it corresponds
toaU(1). Not only that, butP, also satisfies the invariance condition

LT IoE) o we

Hence, the sum of the three adjoint reps
1 + 1
BEGES C+):C—§{ ‘I*][}

= I (16.44)

is the 8+1+12=21 dimensional adjoint rep$y(6). The remaining reps also coa-
lesce taSp(6) reps:

SS TS e it
-0 C
:I_é) (; mofsp6).  (1645)
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The fundamental wart identityl 6.3§ can be used to split the defining rép—
34 3;

1
P+:§{ ti—a——} = —— PP =0
1
P_= 5 { — Z_V_} = — Pipi = Pi(1646)
The wart has eigenvalues :
>4 = ——— —a —j—e (16.47)

The significance of this 6-dimensional alternative algebra, intermediate between
the complex quaternions and octonions, named sextonians by WestbGhywjas
first appreciated by J.M. Landsberg, L. Manivel and B.W. Westbigy][

16.5 CASIMIRSFOR G

In this section, we prove that the independent casimirg-fpare of order 2 and
6, as indicated in the tablé1l As G, is a subgroup o60(7), its generators are
antisymmetric, and only even order casmirs are nonvanishing.

The quartic casimir, (in the notation o%.Q))

@ =tr X*= Zwixjxkxltr (T;T;T:Th)

ijkl

can be reduced by manipulating it with the invariance condittohg

@:72( | ) = o | )+2w.

The last term vanishes by further manipulation with the invariance condition

@ - @ —0. (16.48)

The remaining term is reduced by the alternativity relatib. 10

T -dI-s{0C-C}

Thisyields the explicit expression for the reduction of quartic casimirs in the defining

OO0 )

or X4 :i (tr X2)* . (16.49)

As the defining rep is 7-dimensional, the characteristic equafid)(reduces the
8th and all higher order casimirs. Hence, the independent casimits.fare of
order 2 and 6.
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16.6 HURWITZ’STHEOREM

Definition (Curtis B4]): A normed algebral is ann + 1 dimensional vector space
over a fieldF" with a productry such that
(1) z(cy) = (cx)y = c(zy), ceEF
(#1) v(y+2) = ay +az, x,y,z €A
(z+y)z = vz +yz,
and a non-degenerate quadratic norm which permits composition

(iti)  N(xy)=N(z)N(y), N(z)eF. (16.50)
Here F' will be the field of real numbers. Ldieg, eq,...,e,} be a basis ofi over
F.

T = x0€0 + T1€1 + ...+ The)y, r, €F, e, €A. (16.51)

It is always possible to choogg = I (see Curtis §4]). The product of remaining
bases must close the algebra

eqep = —dapl + faveee, dapy fape € F a,...,c=1,2,....n. (16.52)
The norm in this basis is
N(z) = 22 + dapzary. (16.53)
From the symmetry of the associated inner product (Tits])
N(z+y) — N(z) — N(y)
2 )
it follows that—d,;, = (eq,e») = (ep, €,) IS Symmetric, and it is always possible
to choose bases, such that

(@,9) = (y,2) = — (16.54)

€.y = —0ab + fabc€ec- (16.55)
Furthermore, from

~ (ay,7) = N(ry+x);N(az)N(y) _ N(x)N(y+ 1);N(y) —1

=N(z)(y,1), (16.56)
it follows that fu.,. = (eq, €p, €.) is fully antisymmetric. [In Tits’ notation]51],
the multiplication tensoy ;. is replaced by a cubic antisymmetric fo(m o', a’’),

his equation (14)]. The composition requiremeit.60 expressed in terms of bases
(16.5) is

0=N(zy) — N(z)N(y)
=TalbYcYd (6a05bd - 5ab50d + facefcbd) . (1657)

To make a contact with sect6.2, we introduce diagrammatic notation (factor
i4/6/a adjusts the normalization td.§.2)

Jabe = i\/g * . (16.58)
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Diagrammatically, 16.57) is given by

oz%_%gH 659

This is precisely the relatiorl6.10 which we have proven to be nontrivially real-
izable only in 3 and 7 dimensions. The trivial realizationssare 0 andn = 1,
fape = 0. So we have inadvertently proven

Hurwitz's theorem (Curtis [34]): n + 1 dimensional normed algebras over reals
exist only forn = 0, 1, 3, 7 (real, complex, quaternion, octonion).

We call (L6.10 the alternativity relation, because it can also be obtained by
substituting {6.59 into the alternativity condition for octonion$43

[zyz] = (zy)z — 2(y2),
[ryz] = [zay] = [yza] = — [yzz] . (16.60)

Cartan P(] was first to note thati»(7) is the isomorphism group of octonions,
ie. the group of transformations of octonion bases (written here in the infinitesimal
form)

e:l = (5,11, + iDab)eb
which preserve the octonionic multiplication rules(59. The reduction identity
(16.19 was first derived by Behrendst al. [9] [in very different notation, their
equation (16)]. Tits also constructed the adjoint rep projection operatd¥-f(r)
by defining the derivation on an octonion algebra as
1 3
Dz=<uxz,y>z= —5((:1: cy) - z) + 5[(y7z):(: — (z, 2)yl,
[Tits 1966, equation (23)] where
€u € = fabc€es (16.61)
(eq,€p) = —dup- (16.62)
Substitutingr = x,e,, we find

1 1
(Dz)a = —3zayp (§5ab5bd + gfabefecd> Zc - (16.63)

The term in the brackets is just ti&,(7) adjoint rep projection operatdP, in
(16.13, with normalizationn = —3.

16.7 REPRESENTATIONS OF G,

G5 is characterized by the fully antisymmetric cubic primitive invarint. Con-
tracting with f,., we are able to reduce any column higher than two boxes. Hence,
reps ofG, are specified by Young tableaux of fofgp00...). Pateraand Sankoffpd
have chosen to label the simple roots in such a way that the correspondence is
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Chapter Seventeen

Ey family of invariance groups

In this chapter we continue the construction of invariance groups characterized by a
symmetric quadratic and an antisymmetric cubic primitive invariant. In the preced-
ing chapter we proved that the cubic invariant must either satisfy the alternativity
relation (L6.17), or the Jacobi relationl6.7), and showed that the first case has
SO(3) andG;, as the only interesting solutions.

Here we pursue the second possibility, and determine all invariance groups which
preserve a symmetric quadraticZ6) and an antisymmetric cubic primitive invariant

(4.44),
i, /K = Ql (17.1)

with the cubic invariant satisfying the Jacobi relatidm(©

e

Our task is twofold: we need to

(i) enumerate all Lie algebras defined by the primitives.{)-(17.1). The key
idea here is the primitiveness assumpti8r3¢). By requiring that the list
of (17.1) is the full list of primitive invariantsje. that any invariant tensor
can be expressed as a linear sum over the tree invariants constructed from the
quadratic and the cubic invariants, we are classifying those invariance groups
for whichno quartic primitiveinvariant exists in the adjoint rep (see fig. ).

(iiy demonstrate that we can compute3all; coefficients (or casimirs, or vacuum
bubbles); the ones up to L2are listed in tablé.1. Due to the antisymme-
try (17.7) of structure constants and the Jacobi relatibn.]), we need to
concentrate on evaluation of only the the symmetric casimirs, a subset of

(7.13:
& % % (17.3)

Here cheating a bit and peeking into the list of the Betti numbers falile
offers some moral guidance.
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We accomplish here most of (i): the Diophantine conditicdhs14-(17.19 yield
all of the E;ting family Lie algebras, and no stragglers, but we fail to prove that
there exist no further Diophantine conditions, and that all of these groups actually
exist. We are much further from demonstrating (ii): The projection operators for
Eg family, given in tabled 7.1and17.2enable us to evaluate diagrams with internal
loops of length 5 or smaller, so we have no proof #ratvacuum bubble can be so
evaluated.

As, by assumption, the defining rep satisfies the Jacobi reldfiod(the defining
rep is in this case alsd, the adjoint rep of some Lie group. Hence, in this chapter
we denote the dimension of the defining rep/By the cubic invariant by the Lie
algebra structure constantsC;;;, and draw the invariants with the thin (adjoint)
lines, asin{7.1) and (L7.2.

The assumption that the defining rep is irreducible means in this case that the Lie
group is simple, and the quadratic casimir (Cartan-Killing tensor) is proportional to

the identity
RO

In this chapter we shall usually choose normalization= 1. The Jacobi relation
(17.2 reduces a loop with three structure constants

| 1
:a)\. (17.5)

Remember the grapi.()? The one graph that launched this whole odyssey? In
order to learn how to reduce such loops with four structure constants we turn to the
reduction of thed ® A space.

(17.4)

17.1 TWO-INDEX TENSORS

By the reasoning of sect$0.1-10.3existence of the quadratic and cubic invariants
(17.1) induces a decomposition ef ® A tensors into four subspaces:

Bl By
w0 C+{T[ -5 () wo

1=Py+ B+ P+ P,.

Considerd ® A — A ® A invariant matrix
j —o— |

Qijrl =

]—c»—k'

17.7)

By the Jacobi relationl(7.2), Q has zero eigenvalue on the antisymmetric subspace

— 1 1
QP, = I P, = §HPQ = PAR. =0, (178)
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so0Q can decompose only the symmetric subspace.

By the primitiveness assumption, the 4-index loop invar@hts not an indepen-
dent invariant, but is expressible in terms of any full linearly independent set of the
4-index tree invariant§);; xe, fijm fmke andd;;’'s constructed from the primitive
invariants (7.1). The assumption that there exists no primitive quartic invariant is
the defining relationfor the E5 family. On the traceless symmetric subspace, this
implies thatQ? P, satisfies a relationship of form

oA T T+ {1 -+

0=(Q*+pQ+q)P;. (17.9)

The coefficients, ¢ now follow from symmetry considerations and the Jacobi
relation. Rotate each term in the above equatio®(isyand the project onto the
traceless symmetric subspace;

Cl4p+
{1 %{ SR

T l+p+gq
— — -2 = P
BRI G o B
Jacobi relation4.47) relates the second term to the first:
=32 — (= —2—— = P,
-G Lo le)
1+2p q l4+p+gq
_ (02 _ Z_ 1
= <Q 1 Q-+ 5 N P;. (17.10)

Comparing the coefficients i1 7.9 and (L7.10, we obtain the characteristic equa-
tion for Q

1 5
2 Q- —— A A* =0. 17.11
R R L RRCEPRIY (17.11)
We shall use this equation to obtain a Diophantine condition on admissible dimen-
sions of the adjoint rep. Either eigenvalue@fatisfies the characteristic equation

1 )

“A————=0

6 3(N +2) ’

hence,N can be expressed in terms of the eigenvalue

A2 —

5 62
N+2=— " =106 -X"H—124——— % . 17.12
T 0= 1/6) {( ) +6>\1} (17.12)
It is convenient to reparametrize the two eigenvalues as
1 1 m
A=——— AN =-—— 17.13
m—6"’ 6m—=6" ( )
In terms of the parametei;, the dimension of the adjoint representation is given by
360
N = —-122 4 10m + — (17.14)

m
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As N is aninteger, alloweth are rationalsn = P/Q built from @ any combination
of subfactors of denominatéf = 22 -3 -5 and numeratoP = 0, 1, 2, or5. P and
Q arerelative primes, and there are 45 distinct allowed rationals in all. As either root
A, A* solves (L7.19), the solutions are symmetric under interchangé < 6/m,
so we need to check only the 27 rationals> 6. We postpone the Diophantine
analysis to sectl7.4

The associated projection operat@si) are

:A_lx* { —A*:]:—lzvk*) C} (17.15)

_>Dji
o [ il —  1-2)

:)\*—A{ _Aji_T) C} (17.16)

To compute the dimensions of the two subspaces we first evaluate

ﬁ 12 % N +2
tr P,Q = v = (17.17)

The dimension oft is then given by
(N+2)(1/A+N-1)
2(1 — A\*/)) ’

anddg is obtained by interchanging and \*. Substituting {7.14), (17.13 leads
to

dopy = tr Py = (17.18)

5(m — 6)2(5m — 36)(2m — 9)

4 = m(m + 6)
~270(m — 6)*(m — 5)(m — 8)
g = T 0 (17.19)

The solutions that survive the Diophantine conditions formigdamily, listed in
tablel7.1

To summarize, in absence of a primitive 4-index invariahtp A decomposes
into 5 irreducible reps

1= Py+ P+ P+ Pa+ P (17.20)

The decomposition is parametrized by integeand is possible only ifV andd
satisfy Diophantine conditiond.{.19, (17.19.

Perhaps this is not apparent, but what we have accomplished is a reduction of the
adjoint rep 4-vertex box(....) for, as will turn out, all exceptional Lie groups!

The general strategy for decomposition of higher tensor products is as follows; the
equation {7.10 reduce€Q? to Q, P, weighted by the eigenvalugs\*. For higher
tensor products, we shall use the same result to decompose symmetric subspaces.
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E,

0 + G + T + 0 + € = € R
8 + L2 + 1 + 01 + 01 + 8 = 8 ey
L2 + LL + 1 + LL + s = A 29
get+geetee 4+ 00€ + T + 0g€ + 8T = <80 el
%748 + €801 + 1 + VLTT + (48 = s 1€
029 + 08 ‘C + I + 626 °C + &) = <8L o
6€S°T + 1L6°L + 1 + g9 ‘8 + €e1 = €T Loy
Gl8'¢ + 000 ‘LZ + 1 + 08¢ ‘0€ + 81 = 8V 857
+p + -p + I + ot N = N suoisuawiq
¥) + ¥) + (0) + (c) = (z) @ (2) Y
(11) + (¢z) + (00) + (12)+(e1) + (11) = (11) @ (11) 2%
(20) + (0z) + (00) + (€0) + (01) = (o1) ® (01) £9)
(to0o) + (000z)  + (0020) + (0000) + (otoT1) + (0010) = (0010) ® (0010) el
(0100) + (0002) + (0000) + (0010) + (000T) = (0001) ® (000T) 24
(01000T) +  (gooooo)  +  (000000) +  (000TOO)  +  (100000) = (100000) ® (T00000) o
(0010000) + (000000z) +  (0000000) + (00000TO) +  (000000T) = (000000T) @ (000VOOT) ¥l
(01000000) + (00000002) + (00000000) + (00000010) + (0000000T) = (0000000T) ® (000OOOOT) 87
s|age| unjuAg

. + H + ° + m + D = D ® D
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We shall refer to a decomposition as “boring” if it brings no new Diophantine condi-
tion. AsQ acts only on the symmetric subspaces, decompositions of antisymmetric
subspaces will are always boring, as was already the cade ig.( We illustrate

the technique by working out the decomposition of SyiandV’ @ V in the next

two sections.

17.2 DECOMPOSITION OF SYM® A

Consider SymA, the fully symmetrized subspace®f A. As the first step, project
out thed andA ® A content of SymA:

3
6N+ (N —4) -1
=5 ran—s) l’ ‘II (17.22)

P projects out SymA — A, and PB projects out the antisymmetric subspace

(17.6 Sym’ A — A2 A. The ugly prefactor is a normalization, and will play no role
in what follows. We shall decompose the remainder of the Syspace

P,=S- Py~ Py= (17.23)

by the invariant tensoR restricted to the’,. remainder subspace
Q= _ 1 . qg-= i l EQ — P.QP. (17.24)

We can partially reduc€? using (L7.11) but symmetrization leads also to a new

invariant tensor
TT . 2 r I- -
- E—F?)E[ 'l E (17.25)

A calculation that requires applications of the Jacobi relatibd 4, symmetry

identities such as
ﬂ E o, (17.26)

and relies on the fact th&,. contains nad, ®V A subspaces yields

as _ LTI L 2T
Q3_31--. . +311E (17.27)

Reducing by {7.1]) leads to B B

Q3:(>\+)\*){%Q2+§EE IT E}_WQ (17.28)

The extra tensor can be eliminated hy (29, and the result is a cubic equation for
Q (where we have substituted+ \* = 1/6, using (L7.10):

0= (Q . 1/18) (Q . )\) (Q - /\*) P,. (17.29)

IWI
*—e
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The projection operators for the corresponding three subspaces are givka®y (

P. (Q_)\) <Q_/\*> P, 17.30

ST /18— N (1/18 = A T (17.30)

_162(m —6)? e 36
N (m+3)(m+12){Q 6Q 6m(2 — )2}PT

(@-115) (- )

P ST o B (17.31)
~ 54(m—6)? A m—24 1
(m+3)(m+6){Q218(m—6)Q+18(m—6)}PT

Q—1/18) (Q— A
p4*(Q f15) (@) (17.32)

(A* —1/18) (A* — \) B
2

_ 108 (m — 6) {QQ_Q(m—3)Q+ m }Pr
(m+6)(m+12) 9(m — 6) 108(m — 6)
The presumption is (still to be proved for a general tensor product) that only reduc-
tions occur in the symmetric subspaces, always viaQheharacteristic equation
(17.17. As the overall scale of) is arbitrary, there is only one rational param-
eter in the problem, eithex/\* or m, or whatever seems convenient. Hence, all
dimensions and any coefficients will be ratios of polynomialg:in

To proceed, we follow the method outlined in appendixOn P, PH subspaces
SQ has eigenvalues

SQP; :ﬂ ! E _ % =13 (17.33)
SQP=—r ! E:E = (A+ %) =,a — Ag = 1/6(17.34)

so the eigenvalues arg; = 1/3, Ag = 1/6, A3 = 1/18, Ay = X\, Ay» = A\*. The
dimension formulasA.8) require evaluation of

tr SQ = = —W (17.35)
tr (SQ)? =birdTrack = W (17.36)

Substituting into A.8) we obtain the dimensions of the three new reps:
27(m — 5)(m — 8)(2m — 15)(2m — 9)(5m — 36)(5bm — 24)
- m2(3 +m)(12 + m)
10(m —6)2(m —5)(m — 1)(2m — 9)(5m — 36)(5m — 24)
3m2(6 4+ m)(12 +m)

ds3

dy =
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~ 5(m—5)(m — 8)(m — 6)2(2m — 15)(5m — 36)
de = m3(3 + m)(6 + m) (36 =m)

(17.37)

The integer solutions of the above Diophantine conditions are listed in1alte

The main result of all this heavy birdtracking is thsit > 248 is excluded by
the positivity ofds«, and N = 248 is special, as;~ = 0 implies existence of a
tensorial identity on the Syfal subspace. That dimensions should all factor into
terms linear inm is altogether not obvious at this point.

17.3 DECOMPOSITIONOF[ @ R

The decomposition of2 A tensors has split the traceless symmetric subspace into
a pair of reps which we denoted by ], m. Now we turn to the decomposition of

[1 ® M Kronecker product. We commence by identifying thend® A% content

of the[1 @ B € ®A3 Kronecker product. Thel, m andH components of 1@ W

are projected out by

P = KD>—< (17.38)
Pa—Kg H. (17.39)

B, KH>E< - é;:ﬁ:((l — Py, (17.40)

where the ] @ W vertex is given by 17.15, andH is the not-adjoint antisymmetric

repin (L7.6. In this section double line denotmsrep, andK, are normalization

factors given by ratios of dimensions and appropriate Dynkin indie&% (or 3-j

coefficients). As we shall not need them here, we do not write them out explicitly.
We shall use the invariant tensor

PP

R = =2, (17.41)

——

the restriction of th&) from (??) to them [ space, to decompose the remainder
subspace

PT::[*PDiP.iPH' (17.42)

The eigenvalue oR on each of the above subspaces follows from invariance con-
ditions (??) and the eigenvalue equatio®§0) ) FPg = \Pg see also??):

RP, = % — (1= NP, (17.43)
RPa= | =Fa (17.44)

RP, :lﬁﬁ - (% - )\) By (17.45)
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The characteristic equation fét projected to the remainder subspace (8{54)
is obtained by evaluating? andR>:

AR e
{()\+)\)R—2)\)\*+2 : } g (17.46)
RPP, = (A + N)R? — 4R +4(\ + A*)ER (17.47)

We have usedl(7.1]) invariance, £?), and the symmetry identity

=0. (17.48)

Eliminating the extra invariant tensor it'{.47 by (17.46 we find thatR satisfies
a cubic equation symmetric under interchange> \*
0=R-A+A)R-20)(R -2\")P,, (17.49)
so the eigenvalues @ on the six subspaces of @ B are
{Aa, \m, )‘H’ A, Ams Arm) P = {1 — A, 1/2,1/2 — X\ 1/6,2X0, 207}
As in the preceding section, this leads to decomposition of the remainder subspace

P, into three subspaces:
1

==y (B - 2R - 24P, (17.50)
1 * *

Pa= gy (B O X)) (R —2X)P; (17.51)

P_:W(R— A+ A)(R — 20)P, (17.52)

Dimension formulas of appendix require that we evaluate

tI‘]_:NdH, tr R = =0

tr R* = _2{@—@}_2(1—A)d. (17.53)

Substituting into A.8) we obtain the dimensions of the three reps
27(m — 15)(2m — 15)(m — 8)(2m — 9)(5m — 24)(5m — 36)
m2(m + 3)(m + 12)
5(m — 5)(2m — 15)(m — 6)(m — 8)(5m — 36)
ds = m3(m + 3)(m + 6) (36 —m)
5120(m — 5)(2m — 15)(m — 6)%(m — 9)(2m — 9)
m3(m + 6)(m + 12) '

ds =

dem = (17.54)
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m | 5 8 9 10 12 15 18 24 30 36
N 0 3 8 14 28 52 78 133 190 248
ds 0 O 1 7 56 273 650 1,463 1520 0
dg 0 -3 0 64 700 4,096 11,648 40,755 87,040 147,250
da |0 0 27 189 1,701 10,829 34,749 152,15292,445 779,247

Table 17.2 All solutions of Diophantine conditioh(.54; a bogusm = 30 solution still
survives this set of conditions. This solution will be eliminated B89) (which
says that it does not exist for th& subgroup ofEs.

We see that nothing significant is gained beyond the decomposition of Sy
the preceding section; we have recovered ré@$, (??). Representatiog as
from (17.59, (17.59 is new, but yields no new Diophantine condition.

If we consider reduction of] x [T Kronecker product instead, the only dif-
ference is that7.53 changes t@(1 — \*)d;, and we obtain 2 conjugate reps
corresponding ten /6 < 6/m exchange;

dg = (17.55)
dr = (17.56)

17.4 DIOPHANTINE CONDITIONS

The Diophantine conditionl{.14 and (L7.19 are satisfied only for
m = 8,9,10,12,18,20,24,30 and 36m = 30 is a bogus solution, which does not
survive further Diophantine conditioi7.37).

The solutions of the above Diophantine conditions are listed in fabk The for-
mulas (L7.59-(17.59) yield, upon substitution oV, A and\*, the correct Clebsch-
Gordan series for all members of thg family, table17.2

17.5 RECENT PROGRESS

The construction of thélg family described here was initiated3q, 37] in 1975
and an outline was published!1] in 1981. The derivation presented here, based
on the assumption of no quartic primitive invariant (see fig).1), was inspired by
the work of S. Okubo12(].

17.5.1 Related literature

E. Angelopoulos is credited by M. El Houari(]] for obtaining in an unpublished
paper (written around 1987) the Cartan classification using only methods of ten-
sor calculus. Inspired by Angelopoulos and réfd][ in his thesis M. El Houari
applies a combination of tensorial and diagrammatic methods to the problem of
classification of simple Lie algebras and superalgeliiéls As Algebras, Groups,

and Geometriepournal does not practice proofreading (all references are of form
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[?,?,?]), precise intellectual antecedents to this work are not easily traced. Inarecent
publication [/] E. Angelopoulos uses the spectrum of the Casimir operator acting
on A®? to classify Lie algebras, anihter alia also obtains thézs family of this
chapter within a same class of Lie algebras.

17.5.2 Conjecturesof Deligne

In a 1995 paper Deligne'] attributed to Vogel {53 the observation that for the 5
exceptional groups the antisymmetrié A and the symmetric Syfal adjoint rep
(tensor productsP; + Ay and P, + Py + P in (17.6, respectively) can be
decomposed into irreducible reps in a uniform way, and that their dimensions and
casimirs are rational functions of Vogel's parameterelated to the parametet
of (17.13 by
a= . . (17.57)
m—6

Hereaisa = ®(«, ), wherex is the largest weight of the rep, afdthe canonical
bilinear form for the Lie algebra, in the notation of Bourbaki. Deligne conjectured
that for Ay, As, G, Fy, Eg, E7 and Es, the dimensions of higher tensor rep§A
could likewise be expressed as rational functions of parameter

The conjecture was checked on computer by Cohen and de Mpfof dimen-
sions and quadratic casimirs for all reps uptbA. They note that “miraculously
for all these rational functions both numerator and denominator factQfdhas
a product of linear factors”. The miracle is perhaps explained by the method of
decomposing symmetric subspaces outlined in this chapter.

Cohen and de Man have also observed thashould be added to Deligne’s list,
in agreement with our definition of th&s family, consisting ofA;, As, Ga, Dy,
Fy, Eg, E7 andEg. Their algebra goes way beyond the results given in this chapter,
all which were obtained by paper and pencil birdtrack computations performed on
trains while commuting between Gothenburg and Copenhagen. Cohen and de Man
give formulas for in all 25 reps, 7 of which are also computed here.

In the context of this chaptera = \* = 1/6 — \ is the symmetric space
eigenvalue of the invariant tens@y, in (17.13. The role of the tensa® is to split
the traceless symmetric subspace, and its overall scale is arbitrary. In this chapter
scale was fixed by setting the adjoint rep quadratic casimir equal to ahitys 1
in (17.4). Deligne 9] and Cohen and de Mar§] fix the scale of theit\, \* by
settingA + \* = 1, so their dimension formulas are stated in terms of a parameter
related to the\ used here by o4 = 6. Further “translation dictionary” relations:
(17.37) is their A, (17.37) is theirY3", (17.37) is theirC*.

They refer to the interchange of the roots— \* as “involution .

|
(to be continued ...
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Chapter Eighteen

Eg family of invariance groups

In this chapter, we determine all invariance groups whose primitive invariant tensors
aresy and fully symmetricd,,.., d**¢. The reduction ofx V2 space yields a rule
for evaluation of the loop contraction of dinvariants (8.9. The reduction of

V ® V yields the first Diophantine conditioi§.13 on the allowed dimensions of
the defining rep. The reduction efi’3 tensors is straightforward, but the reduction
of A ® V space yields the second Diophantine conditidpn i6 table 18.4) and
limits the defining rep dimension to < 27. The solutions of the two Diophantine
conditions form thet family consisting ofEg, A5, A + A and A,. For the most
interestingEs, n = 27 case, the cubic casimifll@.43 vanishes. This property of
Es enables us to evaluate loop contractions dfiévariants (8.39, reducex A2
tensors, tablé8.5 and investigate relations among the higher order casimif of
in sect.18.8 In sect.18.7, we introduce a Young tableaux notation for any rep of
Es and exemplify its use in construction of the Clebsch-Gordan series,18lsle

18.1 REDUCTION OF TWO-INDEX TENSORS

By assumption, the primitive invariants set that we shall study here is

§)=a—e—0>
a a

dape = A = dpae = dach ) dabc = * . (181)

b c b c
Irreducibility of the defininga-dimensional rep implies

bed d
dabcd = aéa

—«O—«— =0 —e—. (18.2)

The value ofe depends on the normalization convention. For example, Freuden-
thal [77] takesa = 5/2. Konstein [L0F and Kephart §27] takea = 10. We find
it convenient to set it tav = 1.

We canimmediately write the Clebsch-Gordon series for the 2-index tensors. The
symmetric subspace i) is reduced by thé€,;.d.q. invariant:

— I }-»-{ {:ﬂ:}—»{} (18.3)

The rep dlmen5|ons and Dynkin indices are given in tdBld.
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By the primitiveness assumption, ahy ¥ invariant is a linear combination
of all tree invariants which can be constructed from the primitives:

:}:i D Dt (18.4)
In particular,

One relation on constants, B follows from a contraction witl®:

R AT

1
l—A+Brtl

The other relation follows from the invariance conditi@S5) ond .

l«-é—«- ! —L (18.6)
«
Contracting (8.5 with ( , We obtain
1_ 4 B
4 2 2
n—3 3
A=——— " B=—"_. 18.7
2(n+3)’ n+3 (18.7)

18.2 MIXED TWO-INDEX TENSORS

Let us apply the above result to the reductiovaf 1 tensors. As always, they split
into a singlet and a traceless pa#t45. However, now there exists an additional

invariant matrix
waq b d
b,e — ) (188)
a C

which, according toX8.5 and (L8.7) satisfies the characteristic equation

FE XD G T

1 3
Q'=- 2n+3Q+§n+3(T+1) (18.9)
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Projection ——

operators = I +1 }—)—{ + { — é}-)—{}
—

Dynkin labels <[] = H + m o+ 1]

Es (000010) x (000010) = (000100) + (100000) + (000020)

As (00010) x (00010) = (00101) + (01000) + (00020)

Ay (02) x (02) = (12) + (20) + (04)

Dimensions n? = @ + n + w

Es 272 = 351 + 27 + 351

As 152 = 105 + 15 + 105

Ay + A 9? = 36 + 9 + 36

Ao 62 = 15 + 6 + 15

Dynkin indices 2nl = (n—2)¢ + L + (n+1)¢

12 2-27- % = 2 o+ : + 7

4s 2053 = B e b 5

Ay + A 2-9-1 = I o+ 1 + 5

Table 18.1 Es family Clebsch-Gordon series fayV2. The defining rep Dynkin indek is
computed in {8.19.

On the traceles¥ @ V' subspace, the characteristic equation@otakes form

1 3
P <Q+§> (Q— ?> =0, (18.10)

where P, is the traceless projection operat®&.45. The associated projection
operators §.45 are

3
-3 +
Py = Qli"*j’PQ, Pg = Q Q+s =P, (18.11)
2 n+3 n+3 + 2

Their birdtracks form and their dimensions are given in talfle

P4, the projection operator associated with the eigenvalieis the adjoint rep
projection operator, as it satisfies the invariance conditiéng. To compute the
dimension of the adjoint rep, we use the relation

T e

which follows trivially from the form of the projection operatét, in table18.2
The dimension is computed by taking traged@),

dn(n —1)
N = . 18.13
® T n+9 ( )

The 6+ coefficient, needed for the evaluation of the Dynkin indé2€), can also
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= C i DT
—_——

Dynkin labels Ry | = ° + X + H
Es (000010) x (100000) = (000000) + (000001) + (100010)
As (00010) x (01000) =  (00000) + (10001) +  (01010)
A (02) x (20) = (00) + (11) + (22)
Dimensions n? = 1 + 4”7(1151) + 7<”+3732+(;—1)
Es 272 = 1 + 78 + 650
As 152 = 1 + 35 + 189
A + Az 9? = 1 + 16 + 64
Az 6° = 1 + 8 + 27
Dynkin indices 2l = 0 + 1 PR CE=ILY,
Es 2.27-1 = 0 + 1 + 501
As 2-15- = 0 + 1 + 274
Az + Ay 2.9-1 = 0 + 1 +  16-3
Az 2-6-2 = 0 + 1 + 4

Projection operators

—_—
e Conl > O 3K
Ll n+3 — 2
Po =2 -3 O X

Table 18.2 E; family Clebsch-Gordon series f&f @ V. The defining rep Dynkin indek
is computed in18.14.

be evaluated by substituting&.12) into

@@yig{oc@}

The Dynkin index for thezg family is
0— 1n+9
6n—3

. (18.14)

18.3 DIOPHANTINE CONDITIONSAND THE Eg FAMILY

The expressions for the dimensions of various reps (see tables in this chapter) are
ratios of polynomials im, the dimension of the defining rep. As the dimension of a
rep should be a non-negative integer, these relations are the Diophantine conditions
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on the allowed values of. The dimension of the adjoint ref&.13 is one such
condition; the dimension of, from table18.4another. Furthermore, the positivity
of the dimension\, restricts the solutions te < 27. This leaves us with 6 solutions
n = 3,6,9,15,21,27. As we shall show in chaptetl, of these solutions only
n = 21 is spurious - the remaining five solutions are realized agi#heow of the
magic triangle, figl.1

In the Cartan notation, the corresponding Lie algebrasiarel; + A5, A5 and
FEg. We do not need to prove this, as fag Springer has already proved the existence
of a cubic invariant, satisfying the relations required by our construction, and for the
remaining Lie algebras the cubic invariant is easily constructed, seel8ext\We
call these invariance groups tlig family and list the corresponding dimensions,
Dynkin labels and Dynkin indices in the tables of this chapter.

18.4 THREE-INDEX TENSORS

The® V3 tensor subspaces st/ (n), listed intable.3, are decomposed by invariant
matrices constructed from the cubic primitig,. in the following manner.

18.4.1 Fully symmetric @V tensors

We substitute expansion from talll8.1linto the symmetric projection operator

JE-dE-iTE-IRTR

TheV ® V subspace is decomposed by the expansion of fish2

I>-CC 1D €IDRERID €2 s

The lastterm vanishes by the invariance condit®b%. To getthe correct projector
operator normalization for the second term, we compute

-3 T3

1 3 n+9

= (1+2 w - "T7 w1 (1816
3( * n+3) Sty (1810

Here, the second term is given by tlE-subspace eigenvaluég.10 of the in-
variant matrixQ from (18.8. The resulting decomposition is given in takile.3

18.4.2 Mixed symmetry ®V? tensors

The invarianid.(7;)¢ satisfies

fﬁ - g@ (18.17)
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9 Ey;Youngtableaux: [[[ e M ] o o o omM]e X o omMle X o &

o ) L] L]

= Eg family: /V3= A1 @ X @ X3 @ M @ X @ X D A D A D A @ A1o

w Dynkin labels 0

o Eg (000010)® =(000030) + (100010) + (000000) + (000110) + (100010) + (000001) + (000110) + (100010) + (000001) + (001000)
As (00010)® = (00030) + (01010) + (00000) + (00111) + + (10001) + +(00200)+(01002)
Ay (02)*= (06) + (22) + (00) + (14) + + (11 + + (03)+(30)
Dimensions n’ uiswm:wmﬁs + O oD 4 ) (TED) A oo b 2
FEs 27%= 3003 + 650 + 1 + 5834 + + 78 + + 2925
As 15°= 490 + 189 + 1 + 896 + + 35 + +175 + 280
Az + Ao 9°= 100 + 64 + 1 + 160 + + 16 + + 84
As 6°= 28 + 27 + 1 + 35 + + 8 o+ +10+10
Dynkin indices 0
Es 0
As 0
As + Ao 0
Ao 0
Projection operators
PEEonon o oneIDeEl a3 €Tl
NUm - ) ww = ) wHO -

Table 18.3 E family Clebsch-Gordan series fayV3. The dimensions and Dynkin indices of repeated reps are listed only q@iceis defined in

table18.2

198
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This follows from the invariance conditio®.65):

D ET

Hence, the adjoint subspace lies in the mixed symmetry subspace, projected by
(9.10. Substituting expansions of tabl#8.2and18.3 we obtain

SR (1) I G )
() 2= () ZprgE > € @

The corresponding decomposition is listed in talle3 The other mixed symmetry
subspace from tab 3decomposes in the same way.

DO =
I
+
|

18.4.3 Fully antisymmetric @ V3 tensors

All invariant matrices on®V?3 — ®V3, constructed fromi,;. primitives, are
symmetric in at least a pair of indices. They vanish on the fully antisymmetric
subspace, hence, the fully antisymmetric subspace in®abigirreducible forFs.

18.5 DEFINING ® ADJOINT TENSORS

We turn next to the determination of the Clebsch-Gordan seridg ford reps. As
always, this series contains thedimensional rep

<)

1= P + Ps (18.19)

I: , (18.20)

implies thafi” © A also contains a projection onto thé’2 space. The symmetric rep
in (18.3 does not contribute, as tlak,,. invariance reduced 8.20 to a projection

onto theV space:
l - (18.21)
=—3 . .

The antisymmetrized part 018.20

R— II: Ri — :II (18.22)

Existence of the invariant tensor
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projects out thex V2 antisymmetric intermediate state, as 18 (3:

1 H
P91 gRi— mm = >->-< (18.23)
6 a«a baa

Here the normalization factor is evaluated by substituting the adjoint projection
operatorP, (table18.2) into

6
R — — I . 18.24
RR :I:l:l:[: n+9"" (18.24)

In this way, P5 in (18.19 reduces taP; = P, + P,

P = - Nia>-<—< - >E-< (18.25)

However, P, subspace is also reducible, as there exists still another invariant matrix

onV ® A space:
Q- EK. (18.26)
a

We computeQ? P, by substituting the adjoint projection operator and dropping the
terms which belong to projections ontband®V? spaces:

1
P =Py
- 1
n+9 | —e— 3 3axa

6 n+3

=P, 1- —<—; ;—<——0
n+9{ 3aa }
6

1+n+3 I
n—+9 3aa
6 n+31
=P.——<1- - . 18.27
‘n+9{ 6 aK+O} ( )

The resulting characteristic equation is surprisingly simple

P.Q+1) (Q - L) 0. (18.28)

n+9

The associated projection operators and rep dimensions are listed ihdabl&éhe
rep A\, has dimension zero for = 27, singling out the exceptional groug;(27).

Vanishing dimension implies that the corresponding projection operétd) (
vanishes identically. This could imply a relation between the contractions of prim-
itives, such as thé&/; alternativity relation implied by the vanishing df§.30. To
investigate this possibility, we exparie] from table18.4.

We start by using the invariance conditions and the adjoint projection operator
P, from table18.2to evaluate

:II: - Z:L g:_l:l: . (18.29)
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S :
P4::j195{iu_x+ni9—<—_Zig}C}

(18.31)

Next, motivated by the hindsight of the next section, we rewkiein terms of
the cubic casimir{.43. First we use invariance and Lie algeb#a4® to derive

relation
1

Next we use the adjoint projection operatdB(11) to replace thel,;.d°* pair in
the first term

Sl © v =)

(18.33)
In terms of the cubic casimi7(43, the P, projection operator is given by

e A

3 -
+§> / +/(\}. (18.34)
Substituting back into1(8.31), we obtain

P_n—|—9 27 —n 1 — 1 n+9
T n+15{ 6 (n+9/<\ 4}4)* 24 I} '
(18.35)

We shall show in the next section that the cubic casimir, in the last term, vanishes
forn = 27. Hence, each term in this expansion vanishes separately=o27, and
no new relation follows from the vanishing &f,. Too bad.

However, the vanishing of the cubic casimir for= 27 does lead to several
important relations, special to tHe; algebra. One of these is the reduction of the
loop contraction of @l,;.'s. For Eg (18.39 becomes

G T MGy B

The left hand side of this equation is related to a loop @f8’s (after substituting

the adjoint projection operators):
Es : g d 2 ZGH_ g 2 . (18.37)

This yields

N W
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The right hand side ofl8.39 contains no loop contractions. Substituting the adjoint
operators in both sides of8.36, we obtain a reduction formula ftmops of length
6:

Ee:  — = (18.38)

%{),\L +3uc}‘%+///+\\\+%
—g{&-+_‘|§}+ + + + }

500

f{l‘i’+«§»+ + + + }

At the time of writing this report, we lack a proof that we can compute any scalar
invariant built fromd,,. contractions. However, the scalar invariants which we
might be unable to compute are of very high order, bigger than anything listed in
table5.1, as their shortest loop must be of length eight or longer.

The Dynkin indices, in tabl&8.4, are computed using (28 with A\ = defining
rep,u = adjointrep,p = A3, \4

¢ o1 20
0, = (ﬁ + N) d,— N@' (18.39)
0

The value of the 6 coefficient follows from ??), the eigenvalues of the exchange
operatorQ.
18.6 TWO-INDEX ADJOINT TENSORS

®A? has the usual starting decompositiai (7). Asin sect9.1, we study the index
interchange and the index contractions invariaptandR:

Q:g, R:II' (18.40)
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(TT0000) + (ooo0t0) + (0TO00O) = (0TO000) X(TOOOOO) 9%
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The decomposition induced [ follows from table18.2 it decomposes the sym-
metric subspac®,

i
a a

and, by 0.72), has no effect on the antisymmetric subspaegs P,. The corre-
sponding projection operators are normalized by evaluating

1 27T —-n)(n+1)
Em T 2(n+9)2
1 O B 12(n—-3) W

Such relations are evaluated by substituting the Clebsch-Gordan series Bable

into H,Which yields
16 (n+1 n+9)
T L-wror om0 O DO

(18.42 then foIIows by substitution into

n+ )(n—27)
3 9

This |mpl|es that the norm of the cubic casimir43 is given by

5(n+1)(27—n)
0< < dijudi = — 4 .
e = =1y O O =2

(18.44)
Positivity of the norm restricts < 27. For E (n = 27), the cubic casimir vanishes

identically
Eg : )\ =0. (18.45)

18.6.1 Reduction of antisymmetric three-index tensors

Consider the Clebsch-Gordan coefficient for projecting the antisymmetric subspace
of V3 onto®A2. By symmetry, it projects only onto the antisymmetric subspace

of ®A2:
H _ EEZ[ (18.46)

Furthermore, it does not contribute to the adjoint subspace:

EE%}:_EEiJrzE%izo. (18.47)

That both terms vanish can easily be checked by substituting the adjoint projection
operator, tabld.8.2 Furthermore, by substituting8 38 we have (fom = 27)

This means that foEg reps .......and........ are equivalent.
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18.7 DYNKIN LABELSAND YOUNG TABLEAUX FOR Eg

Arep of Eg is characterized by 6 Dynkin labéls, asasasasag). The corresponding
Dynkin diagramis givenintablé.7. The relation of the Dynkin labels to the Young
tableaux (see sect.9) is less obvious than in the case$if (n), SO(n) andSp(n)
groups, because fdrg they correspond to tensors made traceless also with respect
to the cubic invariand,..

Thefirstthree labels, , a2, a3 have the same significance as for #{é(n) Young
tableaux. a; counts the number of (not antisymmetrized) contravariant indices
(columns of one bom). as counts the number of antisymmetrized contravariant
index pairs (columns of 2 boxE). as is the number of antisymmetrized covariant
index triples. That is all as expected, as the symmetric invadigptcannot project
anything from the antisymmetric subspaces. That is why the antisymmetric reps
in table18.1and tablel8.3have the same dimension as 7 (27). However,
according to ......... , an antisymmetric contravariant index triple is equivalent to an
antisymmetric pair of adjoint indices. Hence, contrary to.$&n) intuition, this
rep isreal. We can use the Clebsch-Gordan coefficients fra4§ to turn any
set of3p antisymmetrized contravariant indices into p adjoint antisymmetric index
pairs. For example, fgs = 2 we have

B
1

Hence, a column of more than 2 boxes is always reduced modula3 &mti-
symmetric adjoint pairs (in the above example= p), which we shall denote by
columns of 2 crossed box

In the same fashion, the antisymmetric covariant ingkdples contribute tas,
the number of antisymmetric adjoint pa% a4 antisymmetrized covariant index

pairs% , andas (not antisymmetrized) covariant indices

Finally, taking a trace of a covariant-contravariant index pair implies removing
both a singleandan adjoint rep. We shall denote the adjoint repdyThe number
of (not antisymmetrized) adjoint indices is given &y. For example, arbU (n)
tensorz¢ € V ® V decomposes into 3 reps of tabl8.2 The first one is the
singlet (000000), which we denote By The second one is the adjoint subspace
(0000001) = X. The reminder is labelled by the number of covariant indices
a; = 1, and contravariant indices, = 1, yielding (100010) = l ] rep.

Any set of2p antisymmetrized adjoint indices is equivalenp®ymmetrize@airs
by the identity

: }
2

— : | S =.. (18.50)
This reduces any column ofl or more antisymmetric indices. We conclude that
any irreducibleEs tensor can, therefore, be specified by 6 numberas, ...
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An Eg tensor is made irreducible by projecting out all invariant subspaces. We
do this by identifying all invariant tensors with right indices and symmetries and
constructing the corresponding projection operators, as exemplified byliakle
throughl8.5 If we are interested only in identifying the terms in a Clebsch-Gordan
series, this can be quickly done by listing all possible non-vanishing invariant pro-
jections (many candidates vanish by symmetry or the invariance conditions) and
checking whether their dimensions (from the Patera-Sankoff tabi}) [add up.
Examples are given in tabe8.6  Mnemonically, we can summarize the corre-
spondence between the irreducililg tensors and the Dynkin labels by

6

A (a17a27a37a47a57a6) A (.7=7§75757%) (18-51)
1 2 3 4 5
a1 = number of not antisymmetrized contravariant indices [ |
as = number of antisymmetrized contravariant pairs =
. . I . |
az = number of antisymmetrized adjoint index pairs % =H-=
|
as = number of antisymmetrized covariant pairs H
as = number of not antisymmetrized covariant indices []
ag = nhumber of not antisymmetrized adjoint indices
For example, the Young tableau for the rep (2,1,3,2,1,2) can be drawn as

[ O (18.52)

The difference in the number of the covariant and contravariant indices
a1 + 2as — 2a4 — as (mOd 3) (1853)

is calledtriality. Modulo 3 arises because of the conversion of antisymmetric triplets
into the real antisymmetric adjoint pairs by3(49. The triality is a useful check
of correctness of a Clebsch-Gordan series, as all subspaces in the series must have

18.8 CASIMIRSFOR Ej
In table7.1we have listed the orders of independent casimirdfpas 2, 5, 6, 8, 9,

12. Here we shall use our construction/f(27) to partially prove this statement.
By the hermiticity ofT;, the fully symmetric tensat, ;, from (18.44 is real, and

O FO -tz =0 (18.54)
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27 27 351 351 27
Jx0=H +1J+ "

27 27 = 650 1 78
- .

351 27 5824 2925 650 78
Hxo=H+ g +m+

27 351 7371 27 1728 351
W - £ 0]+

27 78 1728 27 351

(1 x X =[x+ [J +

78 78 2925 2430 1 78 650
X x X = + XX+ e+ X+
351 27 5824 3003 650

(Tx O = - +T1+ W0

27 7722 27 1728

m (] +[X
7722 7371 351 351 1728 27
-m -0 om0

331 78 17550 351 351 27 7311 1728

H + H +Dj+l+=j+IE

2925 27 51975 1728 17550 7371 351

IPNE I - EIPEEA N apy

Table 18.6 Examples of th&s Clebsch-Gordan series in terms of the Young tableaux.
Various terms in the expansion correspond to projections on various subspaces,
indicated by the Clebsch-Gordan coefficients listed on the right. Seeltatle
through18.5for explicit projection operators.

N om
X X
g O

X
X
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By (18.49), this equals

~a® (n+1)(27—n)

The cubic casimitl;;, vanishes identicalljor Eg.
Next we prove that thquartic casimirfor Fyg is reducible. From the expression
for the adjoint rep projection operator we have

3 n+4
>->-< = {— ; I(COMPLETE)} : (18.56)
which yields
3 n+ 4 11—
- - - . (1857

Now the quartic casimir. By the invariancé.§5

(A o) o

\ [ \ T
The second term vanishes by the same invariance condmon

F3-f8-fH-f e oo

Hl

Substitutlng 18.33, we obtaln

n+9 2

For Es the cubic casimir vanishes, and consequently the quartic casimir is reducible:

1
Fg:tr X4 = E(t1~X2)2. (18.61)

Thequintic casimirtr X° must be irreducible, as it cannot be expressed as a power
of tr X2. (To check that it does not vanish identically, the reader should compute
the analogue of??)).

We leave it as an exercise to the reader to provetth&® is irreducible.

To prove the reducibility ofr X7, we first streamline our notation by introducing
the Es defining rep analogue of the determina®it4(/)

1 AN,
(A, B,C) = —dgp.d* ¢ ABPC (18.62)
«
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with A, B, C arbitrary[n x n] matrices. The invariance conditio.65 for d,.
implies

(T;A,B,C)+ (A, T;B,C)+ (A, B, T;,C) =0 (18.63)
(T;A, A A)=0. (18.64)

With the normalization conditionl@.3, the septic casimir can be written as
tr X7 = (X",1,1). (18.65)

We manipulate this expression by means of the invariance condibB) (
(X7,1,1)=—2(X5 X,1) = 2(X5, X?,1) = 2(X° X, X)
= =T7(X3 X3 X)+6(X3 X% X?) (18.66)
The second term vanishes by invarianéesf). Substituting ??) into the first term,
we obtain a formula that reduces the septic casimir:
(X7,1,1) = —14(X*%, X3,1) = 14{(X°, X% 1) + (X*, X2, X1)}.  (18.67)

18.9 SUBGROUPSOF Ej

Why is A5 (6) in the Eg family?
The symmetric 2-index re@®(2) of SU(3) is 6-dimensional. The symmetric cubic
invariant (L8.2 can be constructed using a pair of Levi-Civita tensors

})\ & (18.68)

Contractions of severdl,;.'s can be reduced using the projection operator properties
(6.28 of Levi-Civita tensors, yielding expressions such as

As(6) : é}-«{ { ><—2>< (18.69)
ST

etc Thereader can check that, for example, the Springer relat®i?) is satisfied.
Why is A5(15) in the Eg family?

The antisymmetric 2-index re® @) of A; = SU(6) is 15-dimensional.  The

symmetric cubic invariantl@.2) is constructed using the Levi-Civita invariafit27)

for SU(6):
Y = @H@y (18.71)

The reader is invited to check the correctness of the primitivity assumgtio$ (
All other results of this chapter then follow.

Is Ay + A2(9) in the Eg family?
Exercise for the reader: unravel tAg + A, 9-dimensional rep, construct thlg,.
invariant.
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18.10 SPRINGER RELATION

SubstitutingP,4 into the invariance conditio®(55 for d,,;,., one obtains th&pringer
relation [146, 147]

1 4o
=3 /6\4_ <> + ;z :n+3 . (18.72)

The Springer relation can be used to eliminate one of the 3 possible contractions of
3 dae's. For theG, family it was possible to reducany contraction of 3f,;.'s

by (16.13; however, a single chain of &,,.’s cannotbe reducible. If it were,
symmetry would dictate a reduction relation of the form

Contracting withd,;. one finds that contractions of pairs &f;.’s should also be

reducible.
1
- —A /&}Jr[ 1 ! . (18.74)
(07

Contractions of this relation with,,. andd; yieldsn = 1, ie. reduction relation
(18.73 can be satisfied only by a trivial 1-dimensional defining rep.

18.10.1 Springer’sconstruction of Eg

In the preceding sections we have given a self-contained derivation b tfaenily,
in aform unfamiliar to a handful of living experts. Here, we shall translate our results
into more established notations, and identify those relations which have already been
given by other authors.
Consider the exceptional simple Jordan algebra A of Hermjian 3] matrices
x with octonian matrix elements (Freudenthal,[77]), and its dual4 (complex
conjugate ofd). Following Springer {46, 147, define products
(Z,y) =tr (Ty) (18.75)
TXY=2% (18.76)
3<zy,z>=(xxy,z2),
and assume that they satisfy
(rx2)x (zxz)=<z,2,0>0T. (18.77)
The nonassociative multiplication rule for elementgan be written in a basis
x = r.€,. EXpandinge, T in (??), we chose a normalization
(eq,€’) =062,  a,b=1,2,....,27 (18.78)
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and define
e, X e, = dgpce’. (18.79)

Substituting into ??), we obtain £7?), with o = g Freudenthal and Springer prove
that (??) is satisfied ifd,;. is related to the usual Jordan product

eq - ey = dupcee, (18.80)
by
R 1 1
Aape = dape — 5[(5abtr (ec) + dactr (€p) + Opctr (e4)] — §tr (eq)tr (ep)tr (€c)] -

FEg(27) isthe group ofisomorphisms which leai#e y) = 58z, and< z,y, z >=
d™x,y,2. invariant.  The derivation was constructed by Freudenthal (equation
(2.21) in ref. [71]):
_ _ 1 1 _
Dzz<x,y>z:2yx(a:><z)—§<y,z>x—6<x,y>z.
Substituting ??), we obtain the projection operatd?):
(D2)g = —3x,y" PY 2. (18.81)

The object< z,7 > considered by Freudenthal is in our notation and the above
factor —3 is the normalization®?), Freudenthal’s equation (1.26). The invariance
of thex-product is given by Freudenthal as

<x,xxXzx>=0.

Substituting ??) we obtain @?) for d..
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Chapter Nineteen

F; family of invariance groups

In this chapter we classify and construct all invariance groups whose primitive
invariant tensors are a symmetric bilinégg, and a symmetric cubi¢,;,., satisfying
the relation 9.19. The results are summarized in taBfe

Take as primitives a symmetric quadratic invaridpi and a symmetric cubic
invariantd,;.. As explained in chapter2, we can usel,; to lower all indices. In
the birdtrack notation, we drop the open circles denotitfy and we drop arrows
on all lines:

d" =a—e—n~n,

a
dabc = dbac = dacb = A = A . (191)
b c

The definingn-dimensional rep is by assumption irreducible, so

dabc dbcd = a(sad

—(O—=a (19.2)
oy = —O —0. (19.3)

Were (19.3 nonvanishing, we could use<Q) C— to project out a 1-dimensional
subspace. The value afdepends on the normalization convention (Schaféf]
takesa = 7/3).

19.1 TWO-INDEX TENSORS

dabe 1S a Clebsch-Gordan coefficient forx V' — V', soV @V space is decomposed
into at least four subspaces:

-1 >
HOC-D<-D ¢+ C

1=A+P,+Ps+ P . (19.4)
We turn next to the decompositions induced by the invariant matrix

Qab,cd = é | . (19.5)
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We shall assume th&) does not decompose the symmetric subspiacehat its
symmetrized projection can be expressed as

éﬂ:§>—<+BI+CD C. (19.6)

Together with the list of primitives1©.1), this assumptiomefinesthe F; family.
This corresponds to the assumptid® 3 in the construction of7,. We have not
been able to construct the, family without this assumption.

Invariance groups with primitives,;, d.». which do not satisfy19.6) also exist.
The most familiar example is the adjoint rep ¥ (n), n > 4, whered,,. is the
Gell-Mann symmetric tensoB(79.

Symmetrizing {9.6) in all legs, we obtain

1@’4% = (B+C’)[9:9]. (19.7)

Neither of the tensors can vanish, as contractions §istkvould lead to

o:%:n+2zo, ozt%;»azo. (19.8)

If the coefficients were to vanish,— A = B + C' = 0, we would have

%{H_H}:I_) C. (19.9)

Antisymmetrizing the top two legs, we find that in this case also the antisymmetric
part of the invariant matrifQ (19.5 is reducible:

ﬁ iy (19.10)

This would imply that the adjoint rep &§O(n) would also be the adjoint rep for
the invariance group af,;.. However, the i mvanance condition

0= . (29.11)
cannot be satisfied for any positive dimension

_ é =n+1=0. (19.12)

Hence, the coefficients il9.7) are non-vanishing and are fixed by tracing vith:

1 2
M-An e
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Expanding the symmetrization operator, we can write this relation as

>0l s € e

(this fixesA = —-1/2,B=2/(n+2),C :1/(n+2)in(196)) or as

>_< I \X/ n—|—2{D C+ ><}

2
dabedecd + dadedebc + dacedebd = n—_’_Q(éabécd + 5ad5bc + 6ac(sbd) (1915)

In sect.19.4 we shall show that this relation can be interpreted as the characteristic
equation for [3« 3] octonian matrices. This s tliefining relatiorfor the £, family.

The eigenvalue of the invariant matiixon then-dimensional subspace can now
be computed from1(9.19

D=
« 2 T n+2
1 1n—2
7}_ " (19.16)
« 2n+2
Let us now turn to the action of the invariant matfix on the antisymmetric

subspace in19.4. We evaluateQ? with the help of the characteristic equation
(19.14:

S [N e
9 2
1 2a 202
——I g + +
n+2
A TN I IIK
2 C4dn+2 n+2

2
0-4(a MHQM) @

Theroots are\y = —1/2, A5 = 4/(n + 2), and the associated projectors are

n+10{I nt 2 } (19.18)
5—:;20{:':—— I | } (19.19)

The dimensions and Dynkin indices are listedi is the projector for the adjoint
rep, as it satisfies the invariance conditia®.(L1):

Pa=

PAQ:%PA. (19.20)
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19.2 DEFINING @ ADJOINT TENSORS

V ® A space always contains the defining rep:

n
aN>(_< { "~ aN } '
1= Pr. (19.21)
We can usel,;,. and(T;)q» to prOject al/ ® V subspace fron¥V @ A:

i C
Ria,bc = | . (1922)
a: b

By the invariance conditiorl©.11), R acting on the symmetrizeld ® VV subspace

projects it onV
l = —% | . (19.23)

Hence R maps theP; subspace only onto the antisymmetrizéds V:
PR=RA

Py | = | I . (19.24)

TheV ® V space was decomposed in the preceding section. Usthgq amd

(19.19, we have
j:l:( - H + >i’< . (19.25)

The P; space can now be decomposed as
=P+ Py+ P

R

s O
}i{:m—ﬂ, (19.27)

and the normalization factors are the usual normalizations for 3-vertices. An inter-
esting thing happens in evaluating the normalization for the subspace: substituting

Here,

(19.19 into i% we obtain
1 1 26 —n
N@_a_a? T 4(n+10)°

1 _ 6(n—2)
d_g,@_ (n+2)(n+10) " (19.28)
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The normalization factor is a sum of squares of real numbers:

@ - a2 3 (T bedaca(Tyas)” = 0. (19.29)

i,j,a

Hence, eithen. = 26 orn < 26 the corresponding Clebsch-Gordan coefficients are

identically zero:
nz?G:—(X:O, (19.30)

and P; subspace in1(9.29 does not contain the adjoint reip, (19.29 is replaced

by
n d5 5
n—26: —m>4—<:—>-<—<+P10. (19.31)

Another invariant matrix oY ® A space can be formed from tw®; ) ., generators:

Q= K (19.32)

We computeP;,Q? by substituting the adjoint projection operator b (19, using
the characteristic equation.14 and the invariance condition, and dropping the
contributions to the subspaces already removed fRym

P ) =P {EZ . n4+0‘2g
SO0
(—b/_

+_ —

%i

=P 10 {3 - Q + (Vamshmg)} (19.33)

Hence Q? satisfies a characteristic equation

+4 6
— P+ 2 -
0 10<Q HEFSTR n+10>

withrootsa;; = —1, a2 = 6/(n+10), and the corresponding projection operators
n+ 10 6
P=P —
116 (n+10 Q) ’
n+ 10

Pz =Pio-— e (14 Q). (19.35)

4
=P 1—
10n+10{

4
10 +10{

(19.34)
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To use these expressions, we also need to evaluate the eigenvalues of the invariant
matrix Q on subspaceB;;, Ps and P, :

on (N Ca 71
QP = o i(z7)P62P6. (19.36)

(It is somewhat surprising that this eigenvalue does not depend on the dimension

n.)
Q%Mél}c

_ Np_ 3-2)
m T 2n+10) °
n—38
p—_""° 19.37
QFy == 775" (19.37)

These relations are valid for amy

Now we can evaluate the dimensions of subspatesP;». We obtain fom < 26
n(n —2)(n —5)(14 — n)

2(n + 10)(n + 16)
3n(n+1)(n—>5)

n+ 16

A new miracle has occurred: only = 26 andn < 14 are allowed. However,
d12 < 0 for n < 5 does not exclude the = 2 solution, as in that case the adjoint
rep is identically zero, antl’ ® A decomposition is meaningless.

Forn = 26, Py is defined by 1{9.3J), (the adjoint rep does not contribute), and
the dimensions are given by

n=20: d11 = O, d12 = 1053. (1939)

d11 ZtI‘Pll =

d12 :tI'Plz =

(19.38)

If a dimension is zero, the corresponding projector operator vanishes identically,
and we have a relation between invariants

0="Pn=Ppo(1/6-Q)=(1-F—P)(1/6-Q). (19.40)

ubstituting the eigenvalues @f, we obtain a special relation

1 1 14
_ 9 1 _\ /__ . (19.41
n =26 - 6 NG 3j:|:£ ( )

Hence, fom = 26 (¥} Lie algebra) the two invariant£ in (19.249 and@ in (19.32),
are not independent.

19.3 TWO-INDEX ADJOINT TENSORS

®A? always decomposes into at least four reps ( ?? ). We consider firgt¢h#
intermediate states
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R— Iz (19.42)

The symmetrid” ® V intermediate states resolve the symmettie A space into:

3D CepprCrgCe e

Py + Pi5 .
(19.43)

Here, the first projector is defined by9.27)

— -0~ as.n

By (19.30 it vanishes fom = 26. The Py, is defined by

AOD b e

We consider next the V3 intermediate states induced by the invariant

Q- (19.46)

Itis easily checked that due to the invariance conditiith 1), the only interesting
mapping induced by is the antisymmetrico 424 — antisymmetricz V3

Q= (:I: _ CLAH) - Pa}[ (19.47)

19.4 JORDAN ALGEBRA AND Fy(26)

Consider the exceptional simple Jordan algebra of traceless Hermitia&h fidatri-
cesx with octonion matrix elements (Freudenthal], Schafer [43). The nonas-
sociative multiplication rule for elementscan be written, in a basis = z,e,,
as

6ab
€.€p =€pe, = ?I + dapcec

a,b,ce{1,2,...,26}, (19.48)

wheretr (e,) = 0 andI is the [3x3] unit matrix. Traceless [83] matrices satisfy
a characteristic equation

1
- §tr (22 — ~tr (z®)I = 0. (19.49)

Substituting we obtain with normalizatiom = Z. Substituting into the Jordan

identity (Schafer [43) ’
(zy)z? = x(yz?), (19.50)
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®ER0)

OO0 = [0 + 0 + « +H+ K

262 = 324 + 26 + 1 4+ 273 + 52

Mol= KJ + O + H

5226 = 1053 + 26 + 273

Kol = KK + B + K + ¢ + H

2704 =522 = 1053 + 1274 + 52 + 1 + 324

MeO -0+ + 0 +H + 00+ X

8424 = 324-26 = 2652 + 4096 + 26 + 273 + 324 + 1053

H@D: ‘+§+E+H+@+D+XD

7098 =273-26 = 4096 + 1274 + 324 + 273 + 52 + 26 + 1053

Table 19.1 TABLE FROM END OF FAFAMILY CHAPTER. NEEDS EDITING!

we obtain. It is interesting to note that the Jordan identity (which defines Jordan
algebra in the way Jacobi identity defines Lie algebra) is a trivial consequence of
(?1). F4(28) is the group of isomorphisms which leave formgzy) = dapzaxs

andtr (xyz) = dapeaypze iNVariant. The derivation is given by Tits (see equation
(28) in [151)

Dz = (z2)y — x(zy) . Tits, equation (28) (19.51)

Substituting {9.49, we obtain the: = 26 case of the adjoint rep projection operator
(19.18

5ad6bc - 5ac(5bd dbcedead - dacedebd
9 3

(D2)a = —3xays ( ) 2. (19.52)
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Chapter Twenty

E-; family and its negative dimensional cousins

Parisi and Sourlas P 7] have suggested that a Grassmann vector space of dimension
n can be interpreted as an ordinary vector space of dimensian As we have
seen in chaptet3, semi-simple Lie groups abound with examples in whieh—

—n substitution can be interpreted in this way. An early example were Penrose’s
binors [L37, reps of SU(2) = Sp(2) constructed asO(—2), and discussed here

in chapter??. This is a special case of a general relation betw&éxin) and
Sp(—n) established in chaptds; if symmetrizations and antisymmetrizations are
interchanged, reps &fO(n) becomeSp(—n) reps. Here we illustrate such relations

by working out in detail an example motivated by Cremmer and Julia’s discovery
of a globalE; symmetry in supergravity3[].

We shall extend the invariant length and volume which characterize the Lorentz
group to a quadratic and a quartic supersymmetric invariant. The symmetry group
of the Grassmann sector will turn out to be on&6f(2), SU(2), SU(2) x SU(2) x
SU(2), Sp(6), SU(6), SO(12) or E7, which also happens to be the list of possible
global symmetries of extended supergravities.

We shall extend the Minkowski space into Grassmann dimensions by requiring
thatthe invariants a$O(4) (or SO(3, 1) - compactness plays norole in this analysis)
become supersymmetric invariants. As shown in chdite¥O(4) is the invariance
group of the Kronecker deltg,,, and the Levi-Civita tensot,,,.»,, hence, we are
looking for the invariance group of the supersymmetric invariants

(z,9) = gua"y”,
(‘Tv Y, z, ’LU) = e,uuapxuyyzgwp 9 (201)

wherep,v,... = 4,3,2,1,—1,—2,...,—n. Our secret motive for thinking of

the Grassmann dimensions as is that we think of the dimension as a trace,

n = 4, and in @ Grassmann (or fermionic) world each trace carries a minus sign.
For the quadratic invarianf,,, alone the invariance group is the orthosymplectic
OSp(4,n). Thisgroup B9 is orthogonal in the bosonic dimensions and symplectic
in the Grassmann dimensions, becausg.ifis symmetric in the/, 1 > 0 indices,

it must be antisymmetric in the, 1 < 0 indices. In this way the supersymmetry
ties in with theSO(n) ~ Sp(—n) equivalence developed in chapfek:

Following this line of reasoning, we assume that if the quartic invariant tensor
eueop 1S @antisymmetric in ordinary dimensions, it is symmetric in the Grassmann
dimensions. Our task is then to determine all groups which admit an antisymmetric
quadratic invariant, together with a symmetric quartic invariant.

The resulting classification can be summarized by:
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symmetricd,,,,+ antisymmetricf,,»,:
(A1 + A1)(4), G2(7), B3(8), D5(10),
antisymmetricf,,,, + symmetricd,,, ,:
50(2), A1(4), (A1 + A1 + A1)(8), C3(14), A5(20), Dg(32), E£7(56) ,

where the numbers i) are the rep dimensions.

The second case generates a row of the Freudenthal magic triangle. 1fig.
In this chapter, we shall be using the matrix notation of Okubio/], rather than
the birdtrack notation used elsewhere in this text. From the supergravity point of
view, it is important to note that the Grassmann space relatives &f@(t) world
include E7, SO(12) andSU(6) in the same reps as those discovered by Cremmer
and Julia. Furthermore, it appears thlitseven possible groups can be realized as
global symmetries of the seven extended supergravities, if one vector multiplet is
added toNV = 1, 2, 3, and4 extended supergravities.

Originally, then — —n relations and the magic triangle arose as byproducts of an
investigation of group-theoretic structure of gauge theories undertaken iG@gf. [

At the time they appeared to be mere mathematical curiosities, but since then their
possible connection with Grassmann dimensions and supergravities has made them
more intriguing.

In sect.20.1to sect.20.3 we determine the groups which allow a symmetric
guadratic invariant together with an antisymmetric quartic invariant. The end result
of the analysis is two non-trivial Diophantine conditions together with the explicit
projection operators for irreducible reps. In setd.4 the analysis is repeated
for an antisymmetric quadratic invariant together with a symmetric quartic invari-
ant. We find the same Diophantine conditions, with dimensioaplaced by-n,
and the same projection operators, with symmetrizations and antisymmetrizations
interchanged.

20.1 THE ANTISYMMETRIC QUARTIC INVARIANT

Add to theSO(n) set of V* invariant tensors - identity and flipo from (6.2), the
index contractiorf” - a fully antisymmetric invariant

Juvps = = foups = —Fupvs = — fuvsp - (20.2)
The simplest[n2 X nﬂ matrix constructed from the new invariant is
El = 6"6° fegup - (20.3)
The SO(n) multiplication ruless® = 1, T = T, T? = n'T are now extended by
TE=0, oE=-E. (20.4)
TheE invariant does not decompose the symmetric subspa®es, (10.10:

1
PE=0 PE=_(1+0)E=0. (20.5)
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TheE invariant can, however, decompose thesubspacel(0.12. As we wish to
introduce one invariant at a time, we demand that no further indepefmﬁemfﬂ]
invariant matrices can be constructed frinin particular,E? is not independent:

(E* +bE + 1) Py =0. (20.6)

This condition, incidentally, also insures that then| matrix(EQ)}g is proportional
to unity:

(E?))) = —cgafk', (20.7)

whered; = n(n — 1)/2 is the dimension of th&€O(n) adjoint rep. Were this not
true, distinct eigenvalues & matrix would decompose the definingdimensional
rep, contradicting our assumption that the defining rep is irreducible.

If the coefficients in 20.6) can be fixed,V; is split into the new adjoint rep
subspacé’; and the remaindér;, by means of projection operato&s49):

E*Oé7].

adjoint: Po=——P;,

Qg — Q7

. . E - agl
antisymmetric: P, =— 202 p, (20.8)

a7 — Qg
whereag + a7 = —b, agay = ¢ are the roots of quadratic equatiazD(6). The

coefficientc is fixed by the scale dE:

tr B2 4+ cds = 0. (20.9)

To fix the remaining coefficiertt introduce an index flip on thEazQ X n2] matrices:

S _ 48 2 _
F(A)y,, =AY, F =1. (20.10)
Combined with the invariant tensors listed above, the additidhaiultiplication
rules are

F(1)=T, F(o)=o0, FE)=-E. (20.11)
It follows that
1 1 1
The characteristic equatiof{.6) maps undeF and P; projection into
Ps (F(EQ) —bE + %cl) =0. (20.13)
In particular, in the adjoint rep subspakg using E = ag P
E2
P (FE) +a2 = 35E) . (20.14)
2 ds

To computePs F(E?), one contracts the invariance conditiof 35 for E with an-
otherE matrix and uses the antisymmetrylofis well as20.7). You might wonder,

how we figured out such things? These calculations are a breeze in the birdtrack
notation; but as people with more algebraic mindset find birdtracks repugnant, in
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this chapter, for once, we hide our tracks behind conventional algebraic notation.
The resultis

1trE?
PGF(EQ) _ gtr

Ps. (20.15)

Now «g, a7 and the associated projection operatBysP; follow from (20.14 and

(20.9:
_ [trE210—n trE2 6

= = — 20.16
“o a6 & 10-n (010
. 6(10 —n) ds 6
adjoint: Pg = E P.
l ¢ (16 — n)? tr E? 16—n "
. 6(10 —n) ds 10—n
antisym: Py = — P 20.17
ym- &7 (16 — n)? tr E2 16—n % ( )
with the dimensions
—1 —1)(10 —
do—trp—on =l oM DA0=) o g
16 —n 2(16 — n)

This completes the decompositierv? = V; & V5 & V4 V7. The new subspaces
Vs, V7 have integer dimension only for = 4, 6,7, 8,10. However, the reduction
of ®V? undertaken in the next section will eliminate the= 6 possibility.

20.2 FURTHER DIOPHANTINE CONDITIONS

The reduction of thex V2 space, induced by the invariani¥, and fi;x;, has led
to a very restrictive Diophantine conditioB(.1§. We shall now show that further
Diophantine conditions follow from the reduction of higher product spacgs.
As an example, we turn to the reduction of (adjointjdefining)35 ® V C @V3.
The tensor};, is an element of the tensor spadex V' if

w' o
(FP6)y,u Ty, =Ty s (20.19)
The simplest invariant matrices one can write down are
identity: 17, %7 = (Ps),507
defining rep: R}, 57 = (Fs)b7 09 (Ps) )7 (20.20)

The factorég' in R is written out explicitly to indicate tha& is amappinds @V —
V — Vi ® V. The characteristic equation

R? = @R (20.21)
n
yields projection operators
Ps="R, Py=1-"R. (20.22)
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Hence, Vs @ V = Vg @ Vg with dimensions

dg = (Pg)ﬁp’zp =n, dg =tr Pg = n(dG — ].) . (2023)
The next invariant matrix we construct is an index permutatioR.of
QL5 = (Pe)i(F6)ps - (20.24)

In order to find the associated projector operators one has to compute
Q)57 = (Po)bt! (Po)ga (Po)yrf -

This is achieved by substituting)7), from (20.17 and using the invariance

condition @.35. The result is

1
o —agPs — arl} . 20.2
Q 2o — an) {(as + a7)@Q — asPs — arl} (20.25)
Then-dimensional spack, is reducible by the roots
1
Qo= ——— oy == (20.26)
ag — ar 2

of the characteristic equation:

1 1
P(Q— 12t Tq 19T 1) _y. (20.27)
2 og — Q7 206 — ay
Substituting 20.16, we obtain the associated projection operators
2(16 — n) 1
Poy=——=1|— -1 ) P,
10 2% _n < Q + 2 ) 95
2(16 — n) 6
Pi=—" 1)F5. 20.2
T ) (Q+16—n) ? (20.28)

This completes the decompositidh® Vs = Vs @ Vig @ Vi1. To compute the
dimensions o, V11 subspaces, we needP,Q:

2n(2
Q= 22 Hn) (20.29)
16 —n
Finally, we obtain
2)(n — 4
dyo=tr Pyo = Sn(n + 2)n —4) ;
28—n
2n(n — 1)(n +2
dy —tr Py = 22 = 1(n+2) (20.30)

(16 —n)(28 —n)
The important aspect of these relations is that the denominators, and hence, the
Diophantine conditions, are different from those #0(19. It is easy to check

that of the solutions t020.18§ d = 4,7,8,10 are also solutions of the present
Diophantine conditions. All solutions are summarized in taiilel.

20.3 LIE ALGEBRA IDENTIFICATION

As we have shown, symmetrit,,, together with antisymmetri¢,,,,, invariants
cannot be realized in dimensions other than 4, 7, 8, 10. But can they be realized
at all? To verify that, one can turn to the tables of Lie algebras of iéf][and
identify these four solutions.
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Representation Dimension A+ Aq Go Bs Dy
V=defining n 4 7 8 10
Vs=adjoint Srln—1) 3 14 21 45
Vz=antisym. % 3 7 7 0
Vs=symmetric [pt2)(n-1) 9 27 35 54
Vio Sn(ni2)(n=d) 0 27 48 120
Via 32n(n—1)(n+2) 8 64 112 320

(16—n)(28—n)

Table 20.1 Representation dimensions for$2(4) family of invariance groups.

20.3.1 SO(4)or A; + A, algebra

The first solutiond = 4, is not a surprise; it waSO(4), Minkowski or euclidean
version, that motivated the whole project. The quartic invariant is the Levi-Civita
tensore ... Even so, the projectors constructed are interesting. Taking

Effg = gﬂsg(spgacn/'y ) (2031)
one can immediately calculat2(.6):
E? =4P;. (20.32)
The projectorsZ0.17) become
1 1 1 1
P6—§P3+ZE7 P7—§P371E, (2033)

and the dimensions arg = d; = 3. Also both Ps and P; satisfy the invariance
condition, the adjoint rep splits into two invariant subspaces. In this way, one shows
that the Lie algebra ofO(4) is the semi-simpleSU (2) + SU(2) = Ay + A;.
Furthermore, the projection operators are precisely thesymbols used by 't Hooft

[87] to map self-dual and self-antidu&lO(4) antisymmetric tensors ont8U (2)
gauge group:

1 1
(PG),lfg = Z (6ZL61€ - glusgl’l) + Eué”ﬂ) = _Znafbl/ngpu

" 1 " 1— =
(Pr)p =1 (050, = 9" 9up = €"°0p) = =1l TTay -
The only difference is that instead of using an index pait Hooft indexes the
adjoint spaces by = 1, 2, 3. All identities, listed in the appendix of ref3]], now
follow from the relations of secf0.1

(20.34)
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Representation Dynkinindex  A; + A Go Bs Ds

V=defining 41(‘;;3) 1 i i 1
Vs=adjoint 1 1 1 1 1
Vz=antisym. (ormd) 0 3 3 0
Vs=symmetric 1(16 —n) 3 9 2 2
Vio ST I
Vii o 5 8 46 12

Table 20.2 Dynkin indices for th€O(4) family of invariance groups.

20.3.2 Definingrep of G,

The 7-dimensional rep af, is a subgroup o5O(7), so it has invariants;; and
€uwsopaps. IN addition, it has an antisymmetric cubic invarianiO[3€] f,.,, the
invariant that we interpret in?) as the multiplication table for octonions. The
quartic invariant we have inadvertently rediscovered is

f;u/po = Euupaaﬂ'yfaﬂ’y . (2035)

Furthermore, fot7, we have the identityl(6.19 by which any chain of contractions
of more than twof,s, can be reduced. Projection operators of sgotl and
sect.20.2yield theG, Clebsch-Gordan serie$.12

TRT=102T0 147,
TQ4=T®27T®64.

20.3.3 SO(7) 8-dimensional rep

We have not attempted to identify the quartic invariant in this case. However, all
the rep dimensions (tabR9.1), as well as their Dynkin indices (tabk.2), match
Bjs reps listed in tables of Patera and Sankof].

20.3.4 SO(10) 10-dimensional rep

This is a trivial solution;P; = P; and P; = 0, so that there is no decomposition.
The quatrtic invariant is

fuvop = EuwvopaprsweCaprswe =0, (20.36)
whereCl, 3 +5..¢ are theSO(7) Lie algebra structure constants.
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This completes our discussion of the “bosonic” symmegyic, antisymmetric
eagys iNVariant tensors. We turn next to the “ferminic” case: antisymmeiric
symmetriceqgys-

204 SYMMETRIC QUARTIC INVARIANT

We have established in chapt&? that the invariance group of antisymmetric
quadratic invarianyf,,, is Sp(n),n even. We now add to the set 8p(n) @V*
invariants £?) a symmetric 4-index tensor

Apvps = dvpps = dppvs = dpvsp - (20.37)

Again, most of the algebra is the same as in s&@tl. Equations 20.3 to (20.9
are the same. We redefine the index permuta2énl() as

5 5 2
F(A)L, = —A)%, F =1. (20.38)
Continuing as in sec®?, we have

F(1)=-T, F(o)=0, FE)=-E. (20.39)

(20.13, (20.19 still apply, but the present redefinition Bfflips sign in 0.15

2
Py(B2) = LU E o (20.40)
3 n

This amounts to replacing — —n in all remaining expressions

6(10+n)ds o 6

adjoint: Ps =
) ST\ @6+ n2wr e 1640

. 6(10 + n)ds 10+n

symmetric: P; = — P. 20.41

4 7 16 102wk~ 16+n ° (20-41)

3n(n+1) 360

dg=————>=3n—-45+ ——— . d7y =ds — dg. (20.42
6 16+ n n + S+ 1n’ 7 4 6- ( )

2
There are 17 solutions to this Diophantine condition, but only 10 will survive the
next one.

20.4.1 Further Diophantine conditions

Rewriting sect20.2for an antisymmetrig),,,, symmetrial,,.., is absolutely trivial,

as these tensors never make an explicit appearance. The only subtlety is that for the

reductions of Kronecker products of odd numbers of defining reps (in this:dad)y

additional overall factors of -1 appear. For example, itis clear that the dimension of

the defining subspacg in (20.23 does not become negative— —n substitution

propagates only through the expressionsifara; anddg. The dimension formulas

(20.30 become

3n(n —2)(n+4)

n + 28

dor — 2n(n—2)(n+1)

T (4 16)(n +28)

dyo=

)

(20.43)
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Out of the 17 solutions ta20.429, 10 also satisfy this Diophantine conditiah=
2,4,8,14,20,32,44,56,164,224. d = 44,164 and224 can be eliminated /]

by considering reductions along the columns of the Freudenthal magic square and
proving that the resulting subgroups cannot be realized; consequently the groups
that contain them cannot be realized either. Only the 7 solutions listed inal3de

have antisymmetri¢,,,, and symmetriel,,, .5 invariants in the defining rep.

20.4.2 Liealgebraidentification

Itturns out that one does not have to work very hard to identify the series of solutions
of the preceding sectionSO(2) is trivial, and there is extensive literature on the
remaining solutions. Mathematicians study them because they form the third row
of the (extended) Freudenthal magic squat#,[and physicists study them because
Er(56) — SU(3). x SU(6) once was one of the favored unified modélg][ The
rep dimensions and the Dynkin indices listed in talffeand??gree with the above
literature, as well as with the Lie algebra table<{. Here, we shall explain only,
why E~ is one of the solutions.

The construction oF;, closest to the spirit of our endeavor, has been carried out
by Brown [15, 163. He considers a-dimensional complex vector spatewith
properties

i) V possessesanon-degenerate skew-symmetric bilineaffiomm = f,,, z*y".
I
(i) V possesses a symmetric four-linear fay(w, y, z, w) = dyo,xty” 27 wP.

(iii) Iftheternary productl'(z,y, z) isdefined o by {T(z,y, ), w} = q(x,y, z, w),
then3{T(z,z,y), T(y,y,y)} = {z, y}a(z, v, y, y).

The third property is nothing but the invariance conditidr8g) for d,,,,s as can
be verified by substitutings from (20.41). Hence, our quadratic, quartic invariants
fulfill all three properties assumed by Brown. He then proceeds to prove that the
56-dimensional rep of’; has the above properties and saves us from that labor.

20.5 THE EXTENDED SUPERGRAVITIESAND THE MAGIC TRIANGLE

The purpose of all this algebra has been to show that the extension of Minkowski
space into a superspace can be a non-trivial enterprise. We now have an exhaustive
classification, but are there any realizations of it? Surprisingly enough, every single
entry in our classification appears to be realized as a global symmetry of an extended
supergravity.

Cremmer and Julia3l] have discovered that itV = 8 (or N = 7) supergrav-
ity’s 28 vectors, together with their 28 duals, form arbéltiplet of a globalE-
symmetry. This is a global symmetry analogousst(2) duality rotations of the
doublet(F,,, F*,,) in j* = 0 sourceless electrodynamics. The appearandg; of
was quite unexpected; it was the first time an exceptional Lie group emerged as a
physical symmetry, without having been inserted into a model by hand. While the
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Representation  SO(2) Ax Ar+ A1+ A Cs As Dg Er

V=defining 2 4 8 14 20 32 44 56 164 224
Vs=adjoint 1 3 9 21 35 66 99 133 451 630
Vz=symmetric 2 7 27 84 175 462 891 1463 13079 24570
Vs=antisym. 0 5 27 90 189 495 945 1539 13365 24975
Vio 0 6 48 216 540 1728 3696 6480 69741 134976
V-11 0 2 16 64 70+ 70 352 616 912 4059 5920
Dynkin indices:

V=defining 5 1 5 1 2 Z : 2 L
Vs=adjoint 1 1 1 1 1 1 1 1 1
Vz=symmetric 14 9 9 10 & 8 =2 406 233
Vs=antisym. 5 6 % 9 12 15 18 45 60
Vio & 14 2 & 22 70 90 2205 380
V-11 : 2 4 g 38 9 10 7 14

4

4

5

8

Table 20.3 Representation dimensions and Dynkin indices foEthfamily of invariance groups.
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classification we have obtained here does not explain why this happens, it suggests
that there is a deep connection between the extended supergravities and the excep-
tional Lie algebras. To establish this connection, observe that Cremmer and Julia’s
N = 17,6, 5 global symmetry group®,, SO(12), SU(6) are included in the present
classification. Furthermore, vectors plus their duals form multiplets of dimension
56, 32, 20, so they belong to the defining reps in our classification.NFet 4
extended supergravities, the numbers of vectors do not match the dimensions of the
defining reps. However, Poul Howe has pointed out that if one adds one vector mul-
tiplet, the numbers match up, and= 1,2, ..., 7 extended supergravities exhaust
the present classification. These observations are summarized in table 5%fjref. [
The present classification is a row of the magic triangle, fi@g. This is an
extension of Freudenthal’s magic square, an octonionic construction of exceptional
Lie algebras. The remaining rows are obtain&d] py applying the methods of this
monograph to various kinds of quadratic and cubic invariants, while the columns
are subgroup chains. In this context, the Diophantine condig2omg is one of
a family of Diophantine conditions discussed in chaf®r They all follow from
formulas for the dimension of the adjoint rep of form

1 1 1
Nzg(k—G)(l—G)—72+360 <k+l> . (20.44)
(20.42 isrecovered by taking = 24, n = 2I—16. Further Diophantine conditions,
analogous t040.43, reduce the solutions o, [ = 8,9, 10, 12,15, 18,24, 35. The
corresponding Lie algebras form the magic triangle, fid.
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(&@%@HDJ)
Oe0=[0+ H + » + K
562 = 1463 + 1539 + 1 + 133
Xeld= X1+ O + N
7448 =133 -56 = 6480 4+ 56 + 912
e0=[TT+ H! + 0 + K
81928 = 1463 - 56 = 24320 + 51072 + 56 + 6480
HeO=-H'+ 0 +0+xX0+ =
86184 = 1539 - 56 = 51072 + 27664 + 56 + 6480 + 912
MoM= K3 + ] + X+ o +
7689 = 1332 = 7371 + 8645 + 133 + 1 + 1539
‘ L
@@D: + o+ H + + [+ %

1549184 = 27664 - 56 = 980343 + 365750 + 1539 + 152152 + 40755 + 8645

Table 20.5 TABLE FROM END OF FAFAMILY CHAPTER. NEEDS EDITING!
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Chapter Twenty One

Exceptional magic

The study of invariance algebras as pursued in chdi¢o 20 might appear to

be a rather haphazard affair. Given a set of primitives, one gets some Diophantine
equations, constructs the family of invariance algebras and moves onto the next set
of primitives. However, a closer scrutiny of the Diophantine conditions leads to a
surprise: most of the Diophantine equations are special cases of one and the same
Diophantine equation, and they magically arrange all exceptional families into a
single triangular pattern which we shall call the Magic Triangle.

21.1 MAGIC TRIANGLE

Our construction of invariance algebras has generated a series of Diophantine con-
ditions which we now summarize. The adjoint rep conditions are:

. 360
F, famil N = 3n —
y family 3n 36+n+10
360
Eg famil N =4n —40 + ——
6 y n + nt o9
. 360
E; famil N=3n-4 _
7 ily 3n 5+n/2+8
. 360
Eg family N =10m — 122+ —. (21.1)
m

There is a striking similarity between the conditions for different families. If we
define

Fy family m=n-+10

Eg family m=n+9

E7 family m=n/2+8, (21.2)
we can parametrize all the solutions of the above Diophantine conditions with a sin-
gleintegem, seetabl@1.1 The Clebsch-Gordan series fé V' Kronecker prod-

ucts also show a striking similarity. The characteristic equatiasl(), (18.29,
(??) and (??) are the one and the same equation

Q-1 (Q+ %) P, =0. (21.3)

Here P, removes the defining angV? subspaces, and we have rescaledfke
operatorQ (17.17) by factor 2. (Role of theQ operator is only to distinguish
between two subspaces - we are free to rescale it, as we wish).
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m | 8 9 10 12 15 18 20 24 30 36 40--- 360

F, 0 0 3 8 . 21 . 52

FEg 0 0 2 8 16 . 35 3 78

E; |0 1 3 9 21 35 . 66 99 133

Es |3 8 14 28 52 78 . 133 190 248

Table 21.1 All solutions of Diophantine conditiorsl(1) not eliminated by other Diophan-
tine conditions of chaptet6 throughl9; those are marked by™

In the dimensions of the associated reps, eigenv@lueintroduces a new Dio-
phantine denominatan + 6. For example, from(7.19, table18.4 (??) and (?),
the highest dimensional rep In ® A has dimension (in terms of parametrization

(21.2)

_ 15120
Fy family 3 6)% — 156 6) + 2673 — ——
Y ily (m + 6) (m+6)+ 6
15120
Eg family 4 6)% — 188 6) + 2928 — ——
6 y 4(m+6) (m+6) + p——
_ 15120
E, family 2 294 48 —
- family {6(m+6) 6(m + 6) + 3348 m+6}
. 27 - 11-1512
Eg family  50m? — 1485m + 19350 + 7360 5120 (21.4)
m m + 6

These Diophantine conditions eliminate most of the spurious solutiorizlaf){
only them = 30, 60, 90 and 120 spurious solutions survive butare in turn eliminated
by further conditions. For thé&s family, V @ V =V ® A = A ® A (the defining

rep is the adjoint rep), hence, the Diophantine condititih4) includes bothl /m
and1/(m + 6) terms. Not only can the four Diophantine conditior2d. (1) be
parametrized by a single integer; the list of solutions tabl@1.1turns out to be
symmetric under the flip across the diagon@j.solutions are the same as those in
them = 15 column, and so on. This suggests that the rows be parametrized by an
integer/, in a fashion symmetric to the column parametrizatiomhylndeed, the
requirement ofn < ¢ symmetry leads to a unique expression which contains the
four Diophantine conditions2(L.1) as special cases:

N = —-724+ — +

3 14
We takem = 8,9,10,12,15,18,24,30 and 36 as all the solutions allowed in ta-
ble 21.1. By symmetry/ takes the same values. All the solutions fill up Magic
Triangle table21.1 Within each entry, the number in the upper left corneNis
the dimension of the corresponding Lie algebra, and the number in the lower left
corner isn, the dimension of the defining rep. The expressions:féor the top
four rows are guesses. The triangle is called magic, partly because we arrived at it
by magic, and partly because it contains Freudenthal’s Magic Squdrerfarked
by the dotted line in tablgl.1

(¢ —6)(m — 6) 360 360 (21.5)
m
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00 (3
I A,
10 2
:0 1 8
! u | A,
10 1 3
0" o 3 14
I A, G,
10 1 3 7
:O 0 2 9 28
: 2U@)| 3A,| D,
1 0 1 2 4 8
:O 0 3 8 21 52
: Al Ayl C; F 4
10 2 5 8 14 26
:0 0 2 8 16 35 78
: 20U A, | 2A,| As| Eg
10 1 3 6 9 15 27
:O 1 3 9 21 35 66 133
: U | Ai| 3A| C3| As| Dg| Ey
1 0 2 4 8 14 20 32 56
3 8 14 28 52 78 133 248
Al Ay G| Dau| F4uf Eg| E7| E
3 8 14 28 52 78 133 248

Table 21.2 Magic triangle. All exceptional Lie groups defining and adjoint reps form an
array of the solutions of the Diophantine conditidtil (5. Within each entry
the number in the upper left corner A¢, the dimension of the corresponding
Lie algebra, and the number in the lower left cornenjghe dimension of the
defining rep.
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21.2 LANDSBERG-MANIVEL CONSTRUCTION

Inspired by conjectures of Deligne (see s&¢t5.9, inaseries of papers J. M. Lands-
berg and L. Manivel ]84, 185 186, 187 apply a wide spectrum of methods, from
Cartan subalgebras to trialities and projective geometries, in order not only to inter-
pret the Freudhental Magic Square, but also to extend it. They arrive at some of the
formulas derived here, including the column of non-reductive algebras intté@lie
They deduce the formul2(.5 conjecturede above from the Vogel&)] “univer-

sal Lie algebra” dimension formula (proposition 3.2 of réf3{]), and interpretn,

tasm =3(a+4),¢=3(0b+4),wherea,b =0,1,2,4,6,8 are the dimensions of
division algebras (see se&b.3 used in their construction. Fat > 12 this agrees

with the Freudhental Magic Square, but far < 10 the corresponding “division
algebras” would need to be of dimensians= —2/3, —1,—4/3, —2, a somewhat
unnatural state of affairs.

iquite a bit more text comes here

21.3 EPILOGUE

Because something is happening here
But you don’t know what it is

Do you, Mister Jones?

Bob Dylan: “Ballad of a thin man”

“I read your book. It is long and it seems original, but - why? Why did you do
this?" you might well ask. OK, here is an answer.

Looking back, almost everything | have done as work which | was paid to do will
probably be of no lasting interest - while the things that | did on the side, for my own
pleasure, have in the long run turned out to be the insights worth living for. One
such sidetrack has to do with a conjecture of finiteness of gauge theories, which, by
its own twisted logic, led to this sidetrack, birdtracks and exceptional Lie algebras.

| started out as a condensed matter experimentalist at MIT, and as such | was
brought to Cornell as a Xerox fellow. | once went down into the bowels of Clark
Hell, where a professor with an army of people was slaving away in dark cubicles,
and | promptly decided to join instead the field theorists who owned a beautiful
rooftop view of the Ithaca hills and Ithaca skie©ne fateful day Toichiro Kinoshita
came up with a Feynman integral and asked me whether | could evaluate it for him.
No sweat, | worked for a while and not only did | integrate it, but also | gave a
formula for all Feynman integrals of that topology. It was only a bait. He came up
with the next integral on which my general method failed miserably. Then he came
with the next integral, and it was like Vietnam - there was no way of getting out of it.

I was spending nights developing algebraic languages disguised as editor macros so
that synchrotron experimentalists would let me use their computer; we were flying
in small planes to Brookhaven, carrying suitcases of computer punch-cards; and
by four years later we had completed what at that time was the most complicated
and the most expensive calculation ever carried out on a computer, and the answer

Iwinter 1996: Doug Osheroff who arrived a year earlier, stayed on.
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was [35]:

1 1la a2 a3

Sl9—2) = 5= —0.32848 (;) + (1183 £ 0.011) (;)

At the very end, | dreamed that | was a digit toward the end of the long string of
digits that we had calculated for the electron magnetic moment, and that | died by
being dropped as an insignificant digit. | was ready to move on.

Among my friends at Cornell were two called Feigenbaum. The first one moved
to a factory town to do union organizing and reached brief national fame when the
Mafia bombed his house. The other one was amazingly fast in solving New York
Times crossword puzzles, but he published nothing. Hans Bethe dispatched him to
Blackhole, Virginia, where he languished publishing nothing until Peter Carruthers
rescued him and took him to Los Alamos on the risky presumption that the man
seemed very smart. In contrast to these good-for-nothings, | was advertised as the
best thing since Roman Jackiw and sent off to Stanford, Princeton and Oxford with
a mission to solve the QCD quark confinement problem.

So, what did I do? | found myself in California, my reading of Nietzsche came to
an abrupt halt, to be replaced by volleyball, bicycling and scortatory love. | wrote
dutifully a series of papers allegedly curing the infrared ills of QCD, and - well, we
never did solve the quark confinement problem, not to this day, not in my book, at
least.

But one day, terror struck; | was invited to Caltech to give a talk. | could go to
any other place and say that Kinoshita and | have computed thousands of diagrams
and that the answer is, well, the answer is:

+(0.92 £ 0.02) (%)3

But in front of Feynman? He is going to ask me why “+” and not “-"? Why do 100
diagrams yield a number of order of unity, and not 10 or 100 or any other number? It
might be the most precise agreement between a fundamental theory and experiment
in all of physics - but what does it mean?

Now, you probably do not know how stupid the quantum field theory is in practice.
What is done (or at least was done, before the field theorists left this planet for
pastures beyond the Planck length) is:

1) start with something eminently sensible (electron magnetic moment; positro-
nium)

2) expand this into combinatorially many Feynman diagrams, each an integral in
many dimensions with integrand with thousands of terms, each integral UV
divergent, IR divergent, and meaningless, as its value depends on the choice
of gauge

3) integrate by Monte Carlo methods in 10-20 dimensions this integral with
dreadfully oscillatory integrand, and with no hint of what the answer should
be; in our caset10 to +100 was a typical range

4) add up hundreds of such apparently random contributions and get
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+(0.92 £ 0.02) (%)3

So, for the fear of Feynman | went into deep trance and after a month came up with
this:

If gauge invariance of QED guarantees that all UV and IR divergences cancel,
why not also the finite parts?

And indeed; when the diagrams that we had computed are grouped into gauge
invariant subsets, a rather surprising thing happ@#s hile the finite part of each
Feynman diagram is of order of 10 to 100, every subset adds up to approximately

1 a\ "

3 (7)
If you take this numerical observation seriously, the “zeroth” order approximation
to the electron magnetic moment is given by

1 1 1 .
—(g—2)= —3722 + “corrections'

2 a
(1-(2)7)
Now, this is a great heresy - my colleagues will tell you that Dyson has shown that

the perturbation expansion is an asymptotic series, in the sense thahtbeder
contribution should be exploding combinatorially

1

e n
_ — )~ .- n<7) cee
2(g ) +n - +

and not growing slowly like my estimate

1 a\"
5(9-2) tn(—) +

But do not take them too seriously - very few of them have ever computed anything.
For me, these unreasonably effective cancellations are a tantalizing hint that some-
thing deep, deeper than anything what we know today, lurks in the gauge invariance
of quantum field theories.

I should not have bothered. | was fated to arrive from SLAC to Caltech precisely
five days after the discovery of thé/v particle. | had to give an impromptu
irrelevant talk about what would the totat e~ cross-section had looked like if
J/¢ were a heavy vector boson, and had only 5 minutes for my conjecture about
the finiteness of gauge theories. Feynman liked it and gave me sage and thoroughly
irrelevant advice. | keptlooking for a simpler gauge theory in which | could compute
many orders in perturbation theory and check the conjecture. We learned how
to count Feynman diagram89]. | invented the planar field theoryl{] whose
perturbation expansion is convergent, but did not know how to combine this with
gaugeinvariance. | formulated the theory of the group weights of Feynman diagrams
in non-Abelian gauge theories{] (chapters3—15 of this monograph) but did not
find a relative of local gauge invariance there, either. By marrying Poincaré to
Feynman we found a new perturbative expansiai\vhich appears more compact
than the standard Feynman diagram perturbation theory. No dice. To this day | still
do not know how to prove or disprove the conjecture.
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Los Angeles is no place for a car hater, so | eloped for Institute for Advanced
Study, Princeton. The Institute is a quiet pretty place at the edge of the woods. The
mathematician who lived in my apartment before me had been taken away by men
in white coats because he never spoke, he only grunted. They found the apartment
furnished by a large number of dictionaries, and nothing else. | loved being there.
During the day | was solving the quark confinement problem (Stephen Adler got
me into some cockeyed quaternionic calculation), but the nights were mine. | still
remember the bird song, the pink of the breaking dawn, and me ecstatically pursuing
the next tangent:

QCD quarks are supposed to come in three colors. This requires evaluation of
SU(3) group theoretic factors, something anyone can do. In the spirit of Teutonic
completeness, | wanted to check all possible cases; what would happenif the nucleon
consisted of 4 quarks, doodling

n(n21),

and so on, and so forth? In no time, and totally unexpectedly, all exceptional Lie
groups arose, not as Diophantine conditions on Cartan lattices, but on the same
geometrical footing as the classical invariance groups of quadratic nSiths),

SU(n) andSp (n).

If lwere to give myself a prie - | am nothinking of anything big, but of something
commensurate with what | have accomplished, let us say a week’s vacation in
Lalandia - | would have given myself a prize for the Magic Triangle, tadlel,
where all exceptional Lie groups emerge in one big family. 1 like this, because it
is one of those magic things that one discovers for no apparent reason whatsoever.
Now, | am a fool who, even though he has put more effort in this project than any
other, has only completed a write up here and now, in the pages that you have just
leafed through. This, first because nobody wants to hear about it, second because
| have no idea about how to derive all rows of the Magic Triangle in one go, and
then, the truth: | got sidetracked by the next equally frivolous side diversion.

In spring 1976 Mitchell Feigenbaum came to visit from Los Alamos, having
published even less than before. He gave a seminar, but nobody understood a word.
Starting point was a parabola, then things got incredibly complicated, and at the
end it turned out that the theory might be applicable to fluctuations of forest moth
populations. However, Mitchell and | were driven by a secret agenda - the thing
was robust, you could make it very imperfect, and a universal superstructure would
survive the imperfections. In other words, just what you need to build a brain - all
parts imperfect, and the thing functions anyway. The grand scheme boiled down to
one equationd4],

9(x) = ag(g(z/a)),
and | went off to the math library to look it up. The Institute has an excellent math
library, but | did not find it. As a matter of fact, we never found it to this very day -
it had never been written down before.
As you would expect, nobody wanted to hear about it, either. To be fair, |
remember the total of four who did: Freeman Dyson, John Milnor, Bill Thurston,
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and Blott. Blott is a wonderful San Franciscan whom | love even more dearly than
Dyson; the rest you should know.

By that time | was already deep in trouble - once | learned that chaos is generic
for generic Hamiltonian flows, | lost faith in doing field theory by pretending that it
is a bunch of harmonic oscillators, with interactions accounted for as perturbative
corrections. This picture is simply wrong - strongly coupled field theories (hydro-
dynamics, QCD, gravity) are nothing like that7]. So they excommunicated me
from the ranks of high energy theorists, and now | am in charge of a project. We
are working out quantum chaos. The truth is, this is what | set out to do in 1978 -
replace the path integral with a fractal set of semi-classical orbits, so | feel that | am
closer to figuring out the quark confinement than ever before.

“OK, OK - everybody has a story," you say “But on pag#you claim to have
derived your Magic Triangle36, 37, 41] already in late 1970’s. What took you so
long?"

Some water has flown under the bridge in the meantime, and diagrammatic meth-
ods have since become the notation of choice for a select group of group theory
practitioners. However, nobody, but truly nobody showed a glimmer of interest in
the exceptional Lie algebra parts of this work, so there was no pressure to pub-
lish it before completing it: by completing it | mean finding the algorithms that
would reduce any bubble diagram to a number for any semi-simple Lie algebra.
This monograph accomplishes the task @&y, but for £, Es, E; and Eg this is
still an open problem. This, perhaps, is only matter of algebra (all computations in
this monograph were done by hand, mostly on trains and in airports), but the truly
frustrating unanswered question is:

Where does the Magic Triangle come from? Why is it symmetric across the
diagonal? The Freudenthal-Tits construction of the Magic Square in terms of oc-
tonionic matrices is the best answer so far, but it is not a natural answer from the
invariance groups perspective. Something is happening here, but | don’t know what
itis. A Mother of All Lie Algebras, some complex function which yields the Magic
Triangle for a set of integer values? This, it seems, requires an idea. Une idée, c’est
déja quelque chose.

And then there is a practical issue of unorthodox notation: transferring birdtracks
from hand drawings to LaTeX took another 21 years. In this | was rescued by Henri-
ette Elvang who mastered the art of birdtracking on her own, in her Master’s Thesis,
and introduced me to Anders Johansen, Copenhagen University undergraduate, who
then undertook drawing some 4,000 birdtracks needed to complete this manuscript,
of elegance far outstriping that of the old masters.

Remain brave.
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Magic negative dimensions

22.1 E; AND SO(4)

22.2 Eg AND SU(3)

|
(still to be entered



Predrag Cvitonavic
still to be entered

Predrag Cvitonavic
still to be entered


GroupTheory December 10, 2002



GroupTheory December 10, 2002

Appendix A

Recursive decomposition

This appendix deals with practicalities of computing projection operator eigenval-
ues, and is best skipped unless you need to carry out such calculation.

Let P stand for a projection onto a subspace or the entire space (in which case
P = 1). Assume that the subspace has already been reducethinmteducible
subspaces and a reminder

P=) P +P. (A.1)

~y=1
Now adjoin a new invariant matrig to the set of invariants. By assumpti@gpdoes
notreduce furtherthe = 1,2, ..., msubspacese.has eigenvalues;, Ao, ..., A\,
QP, =\, P, (no sum), (A.2)

on theyth subspace. We construct an invariant, magrjxestricted to the remaining
(as yet not decomposed) subspace by

Q= P.QP, = PQP - \,P,. (A.3)

r=1

As P, is a finite dimensional subspac@ satisfies aninimalcharacteristic equation
of ordern > 2

n m—+n

>aQb= J[ (@-xaP) =0, (A.4)

k=0 a=m+1
with the corresponding projection operatoBsif).

P, —HQ )\ﬁPr7 a={m+1,....m+n}. (A.5)
BFo
“Minimal” in the above means that we drop repeated roots, so all eigenvalues are
distinct. @ is an awkward object in computations, so we reexpress the projection
operator, in terms of), as follows.
Define first the polynomial, obtained by deleting (I@— Ao ) factor from @A.4)

n—1

H;L—)\,g Zbkx a,B=m+1,...m+n, (A.6)
Bra

where the expansion coefficiem = b, () depends on the choice of the subspace
«. SubstitutingP, = P —>""" | and using the orthonomality @, we obtain
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an alternative formula for the projection operators

P, Zb ST Zbk{ ’“—E:IA@PV}P, (A7)
=

& k=0

and dimensions

dp = tr P, —Zblk)\kZbk{tr (PQ)* Zyc } (A.8)

* k=0

The utility of this formula lies in the fact that once the polynomtale() is given, the
only new data it requires, are the trace$PQ)*, and those are simpler to evaluate
thantr QF.
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Properties of Young projections

(H. Elvang and P. Cvitanog)

In this appendix we prove the properties of the Young projection operators, stated
in sect.9.4.

B.1 UNIQUENESS OF Young projection operators

We now show that the Young projection operakyris well-defined by proving the
existence and uniqueness (up to sign) of a non-vanishing connection between the
symmetrizers and antisymmetrizersiy.

The proof is induction over the number of columnim the Young diagrant'.

Fort = 1 the Young projection operator consists of one antisymmetrizer of length
s ands symmetrizers of length 1, and clearly the connection can only be made in
one way, up to an overall sign.

Assume the result to be valid for Young projection operators derived from Young
diagrams witht — 1 columns. Let Y be a Young diagram withcolumns. The
lines from A in Py must connect to different symmetrizers for the connection to
be non-zero. Since there are exadtly | symmetrizers inPy, this can be done in
essentially one way, since which line goes to which symmetrizer is only a matter of
an overall sign, and where a line enters a symmetrizer is irrelevant daes}o (

After having connected A connecting the symmetry operators in the rest of
Py is the problem of connecting symmetrizers to antisymmetrizers in the Young
projection operatoPy-, whereY” is the Young diagram obtained from Y by slicing
off the first column. ThusY’ hask — 1 columns, so by the induction hypothesis, the
rest of the symmetry operatorsi®- can be connected in exactly one non-vanishing
way (up to sign).

The principles are illustrated below:

- F

(B.1)




GroupTheory December 10, 2002

248 APPENDIX B

B.2 NORMALIZATION

We now derive the formula for the normalization factey, such that the Young
projection operators are idempoteft = Py. By the normalization of the sym-
metry operators, Young projection operators derived from fully symmetrical or
antisymmetrical Young tableaux, will be idempotent with = 1.

PZ is simply Py connected taPy, hence, it may be viewed as a setaafter
symmetry operators connected by a seinofer symmetry operators. Expanding
all the inner symmetrizers and using the uniqueness of the non-zero connection
between the symmetrizers and antisymmetrizers of the Young projection operator,
we find that each term in the expansion is either O or a versidp,ofIn fact, the
number of non-zero terms — denotg|lY || — is just the numbefY]|, defined in
sect.9.4. For a Young diagram with rows andt columns, there will be a factor of

|sl,.\ (‘i_') for expansion of each inner (anti)symmetrizer, thus we find

2
o N
Pi=a} I TR = > 1A
T T 1A 2 2

7j=1 mess
Y]

=y S PY- (BZ)
Hi:l ‘Si“ H§:1 ‘Aj“

Idempotency is then achieved by taking
s t
Hi:l |Si“ Hj:l |Aj|!
Y]
Let Y be a Young tableau withA;| = s, |S1| = ¢, |S2| = ¢’ etc We count in

how many ways the lines, entering the inner, fass through it to yield non-zero
connections. We refer to

ay = (83)

AL Ay Ap Ay
t

sy | S ‘ ‘
-1

s1

52|

in the following. For each of the inner symmetrizers there must be exactly one from
A1. The first line can pass through An s ways, and without loss of generality we
may take it to pass straight through, connecting tavBere it can pass through in
t ways. Thus for the first line, there weser ¢t — 1 allowed roads through the inner
symmetry operators. The second line may now pass throygh A— 1 ways, and
we can take it to pass straight through tg ®here it hag’ possibilities. Thus, we
have found(s — 1) 4 ¢’ — 1 options for the second line. With a similar reasoning
we find (s — 2) + ¢/ — 1 allowed ways for the third linegtc

Let wy be the number of ways of passing thelines entering A through the
inner symmetry operatorswy is then the product of the numbers found above,
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wy =(s+t—1)(s—14+t' —1)(s—2+1t"—1)---. Note that when calculating
Y], the product of the numbers in the first column of the Young diagranyis

We show|Y]|| = |Y| by induction on the number of columnsn the Young
diagram Y.

For a single column Young diagraf| = |A;|!, and the number of non-zero
ways to connect théd; symmetrizers to\; in Py is |A4]!, hence||Y| = |Y]| for
t=1.

Assume thaf|Z|| = |Z| for any Young diagram Z witlh — 1 columns. Let Y be
a Young diagram witht columns, and leY”’ be the Young diagram obtained form
Y by removal of the first columnwy is the number of ways, the lines, entering the
first inner antisymmetrizer i, are allowed to pass through the inner symmetry
operators. Finding the number of allowed paths for the rest of the lines, is the problem
of finding the number of allowed paths through the inner symmetry operatés pf
whichis||Y'|| = [Y'|. Now we have|Y || = |[Y'||wy = |Y'|wy = |Y].

B.3 ORTHOGONALITY

If Y and Z denote Young tableaux derived from the same Young diagram, then
PyP; = PPy = dy zPy, since there is a non-trivial permutation of the lines
connecting the symmetry operators of Y with those of Z, and by uniqueness of the
non-zero connection, the result is eitiér = P or 0.

Next, consider twdlifferently shapedroung diagrams Y and Z with the same
number of boxes. Since at least one column must be bigger in (say) Y than in Z,
and thep lines from the corresponding antisymmetrizer must connect to different
symmetrizers, it is not possible to make a non-zero connection between the anti-
symmetry operators aPy to the symmetrizers i, and hencePy P, = 0. By a
similar argumentp; Py = 0.

B.4 THE DIMENSION FORMULA

The dimensions of the irreducible reps can be calculated recursively from the Young
projection operators. Here is the recipe:

Let Y be a Young diagram and’Yhe Young diagram obtained from Y by re-
moval of the right-most box in the last row. Draw the Young projection operators
corresponding to Y and’Yand note that if we trace the last line B, we obtain
Py, multiplied by a factor.

Quite generally, this contraction will look like

V‘v

(B.5)
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Using 6.10 and ©.19, we have

1
k m:E o (B6)
ol ) FE-1)T

“Em [T o ‘g

—(k—1)(m - 1)g

_n—m+ k: - 1)
 km km

Inserting B8.6) into (B.5), we see that the first term is proportional to the projection
Py/. The second term vanishes:

(B.7)

lower loop
The lines, going into § come from antisymmetrizers in the rest of the-diagram.
One of these lines, from A say, must pass from*Shrough the lower loop to A
and from A' connect to one of the symmetrizers, say, $ the rest of thePy-
diagram. But due to the construction of the connection between symmetrizers and
antisymmetrizers in a Young projection operator, a line is already connectittg S
A,. Hence, the diagram vanishes.

The dimensionality formula follows by induction on the number of boxes in the
Young diagrams, with the dimension of a single box Young diagram beirget
Y be a Young diagram witlp boxes. We assume that the dimensionality formula
is valid for any Young diagram witph — 1 boxes. WithPy obtained fromPy as
above, we have (using(6) and writing D+ for the birdtrack diagram aPy):
n—m+k

dim Py = aytr Dy = o aytr Dy (B.8)
Y/

=(n—m+k)ay |Y||tr Dy (B.9)

=(n—m+ k)i fr (B.10)

Yl Y|
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This completes the proof of the dimensionality form@a2§).

B.5 LITERATURE

» Thisintroductionto the Youngtableauxis based on Lichtenbeig[Hamer-
mesh BC] and van der Waerderi p4).

 The rules for reduction of direct products: See Lichtenbéfig] The rules
are stated here as in (Elvang 1999).

» The method of constructing the Young projection operators, directly from the
Young tableaux, is described in van der Waerden, who ascribes the idea
to von Neumann. See also Kennedy slided.[

« Alternative labeling of Young diagrams: Fischlér/].
(a1as...ar-1Z) — (arag ...a;00...) . (B.11)
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Appendix C

(5 calculations

C.1 EVALUATION RULESFOR G»

The G4 invariance algebra is derived in chapi€r The evaluation rules are:
Adjoint rep A
1

= 5 ((Sa,d(sbc - 6@(1(5()(1) - fn,befecd

T <

V ® V decomposition

Projector: :%) C+{I_%D C}
> >

Dimension: n®=14+7+ 14

Dynkin index: I~ ! =+ + 1 (C.2)
fabe @lgebrais defined by

normalization

—O— S (C.3)

total antisymmetry

Abob e

and the alternativity relation

>—<+A—%{2X-) C—)(}. c5)
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Other forms of the alternativity relation are

>—<+Ié{) C+X2><} (C.6)
>—<+I:=%I (C.7)

H:é{%-%::]} (C.8)

From the above three defining relations follow all other identities:

Reduction identityprovides the algorithm for evaluating any color weight:

ko] e

Another form of the reduction identity is

:é QT%M . (C.10)

AA c
1
/é\i/l\ (C.12)

Sundry relations
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—() =0 (C.13)

—q ~0 (C.14)

—6 { { :f‘. ‘.+2>< - (C.15)

178{) C+X}; +:>< (C.16)
- (C.17)

C.2 G2, FURTHER CALCULATIONS

Some formulas (not to be included into the manuscript) for symmetric(reps:

di:(n;:?) {nli(n23n30)\/£I_i_.2“}' (C.18)

Then? — 3n — 30 seem to be off by an extra factor of 4?

C.21 G, antisymmetric V @ V subspace

1 - {I;>—<} 1 > s

A = PD .
The P, is split by primitiveness. Q= 1
( +A +B ) Pa=0 (Q*+AQ+ B)P =0

(C.20)

The A + B are the only trees oR, subspace.
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Invariance conditionKnow that it mustcontain the adjoint rep:

- >+ )ﬁ( (C.21)

and that the adjoint rep has eigenvagje

{ _ %{ (C.22)

The remaining eigenvalukeneeds to be fixed. The projectors are
Q-1/2 Q- X
Zo1jpleta= eyt
and the characteristic equation is

(Q* — (A +1/2)Q + \/2)P, = 0. (C.24)

This eliminatesA, B above in favor of single parametar However, there are 2
parameters. Expanding, get

s s e
(= )8+ 2 > (C.25)

Pt g)B+ = (BN 3)=7. (c26)

So we need to fixﬂ{]: = /\—C @< = ﬂ—<.

Trace, contract with—— from above, get
Q- &l

1-B-A+3)+3(n—-1)—2y=0|. (C.28)
Trace Withfl\

[eN=IRETloNeY
0 Q)2

By = (C.23)

v\ =0(C.27)

O:

l\')l»—t

N (C.29)

Do | >
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The second term in the first bracket and the first term in the second bracket both
equal0 by symmetry.

Trace with )\

1 1 1 A

& &b
Lh b AL

The second term in the first bracket equalsy symmetry.

52—(>\+%)(1—6)+%—2M=0- (C.32)
Replacey by (C.30:
1 A 1
F=+3)A=p)+35 -2 +3)8=0
(B+H(B-1-1=0]. (C33)
Combine .30 with (C.28):
n - 7 (C.34)

One of those miracles; now just have to check it out for the two solutions.88:

8= —% = j> Substitute into contraction:
Q- NA— (8- >\>—< Q- /\A+(>\+1/2)>—<
Py =

1/2 - A 1/2 =\

(C.35)
da= 1/21_A {— %8—A”("Q_ D +()\+%)}
- 1/2717 : {1 B )\n(nQ— 3) }
_ 1/27_ . {1 Y 14} (C.36)
1401 - 14)) (©.37)

1—-2X
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There are two subcases = 7, A # 0 = A indeterminate which means that

I ><

7:%+A (C.39)

intertangle and

(C.40)

N:—g%+69=%h (C.41)
G5 is a solution.

The other solution toE.33 gives
B=1+A=>n-TA=3+2\=

g= : (C.42)
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