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Q : What is the group theoretic weight for QCD diagram (asymptotic freedom?)

1. new notation: invariant tensors <— “Feynman” diagrams
2. new computational method: diagrammatic, start — finish

3. new relations: “negative dimensions”  SO(n) < Sp(—n), E; < SO(4),
etc.

4. new classification: primitive invariants — all semi-simple Lie algebras
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Part I: SU(n), SO(n), Sp(n): a review

1. invariance groups of quadratic norms

2. birdtrack notation

3. reduction of multi-particle states




U(n) invariant matrices

%

U(n): invariance group of the norm of a complex vector |z|? = §%2%z,,.

only primitive invariant tensor: 0y = a—>—1D

2 invariant tensors M € V2V?2:

d —e—c d c
identity : 145 = 0705 = . trace:  Tgf = 0305 = ) ' -

a—>—0D

Evaluation of 72 in tensor, birdtrack, matrix notation:
TITss = 65616505 =nTys,
2 D=2 C
T? =nT.

where

0. = n = the dimension of the defining vector space V/




U(n) reduction

%

Trace + traceless projection operators decompose U(n) — SU(n) & U(1):

SU(n) adjoint rep: P, =1- 2T

2= _-DC

U(n) singlet: P, =17 = %} C




% Birdtracks at work |

Example: SU(n) evaluation of

The adjoint rep (all traceless matrices) projection operator

sum: I C=__ -

Eliminate structure constant Cj;;, 3-vertices using

Tae




Heavy birdtracking, SU(n)

%

Evaluation is performed by a recursive substitution, the algorithm easily automated
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SU(n) 4-loop graph evaluated

Collecting everything together, we finally obtain

SU(n) : @ =2n*(n* +12) —.

Any SU(n) graph, no matter how complicated, is eventually reduced to a polynomial in traces of
0¢ = n, the dimension of the defining rep.




% A brief history of birdtracks \

Wigner lineage:

1930: Wigner: all physics (atomic, nuclear, particle physics) = 3n-j coefficients.

1956: I.B. Levinson: Wigner theory in graphical form (see A. P. Yutsis, |. Levinson and V. Vanagas,
and G. E. Stedman).

Feynman lineage:

1949: R.P. Feynman: beautiful sketches of the very first “Feynman diagrams”
1971: R. Penrose's drawings of symmetrizers and antisymmetrizers.

1974: G. 't Hooft double-line notation for U(n) gluons.

1976: P. Cvitanovi¢!-2birdtracks for SU(n), SO(n) and Sp(n); the exceptional Lie groups other
than Ej.

1P, Cvitanovié, Phys. Rev. D14, 1536 (1976)
2P. Cvitanovié, Oxford preprint 40/77 (June 1977); www.nbi .dk/ChaosBook

N /




% Cubic and higher invariants? |

Suppose someone came into your office and asked

Q :
“On planet Z, mesons consist of quarks and antiquarks, but baryons contain 3
quarks in a symmetric color combination. What is the color group?”
invariant tensors:
ad a
0! = am—b, dupe = )i\ ;A = (dgpe)* = A
b o b C
A

neither trivial, nor without beauty:

On planet Z quarks can come in 27 colors, and the color group can be the excep-
tional Fj.

(No Killing-Cartan anywhere)




Part II: Invariance groups, a prelude |

1. invariance groups
2. primitive invariants

3. reduction of multi-particle states




i Invariants, invariance groups |

Generalize length ¢ = 0,q1q, to cubic and higer invariants:

PG,y 8) = hy O s

is an invariant of the group G if for all G € G and any set of vectors ¢, r, s, ... it satisfies

invariance condition: p(Gq,Gr,...Gs) =p(q,T,...,s).

Definition. An invariance group G is the set of all linear transformations which leave invariant

pl(xvg):pl(GxagGT) ) p2<$7ya 2N ) — pQ(Gx7Gy7 Gz.. ) )

a finite list of primitive invariants.




2 Primitive invariants |

Definition. An invariant tensor is primitive if it cannot be expressed as a combination of tree
invariants composed of other primitive invariant tensors.

Example:

Kronecker delta and Levi-Civita tensor are the primitive invariant tensors of our 3-dimensional
space.

For SO(3) the 4-vertex loop

hijkl = €ims€inmCkrn€lsr —

with interal loop indices m, n, r, s summed over, is not a primitive, because the Levi-Civita relation

<= =X

Kreduces it to a sum of tree invariant tensors.




% Invariance, infinitesimally |

Invariace of tensor h under infinitesimal G : VPQV? — VPRV

Go’hg = (0" 4 ¢;(T})a"Yhg + O(€) = hy .

Generators of infinitesimal transformations annihilate invariant tensors

T;h =0.

Diagramatically, a derivative:

Invariance condition:




% Lie algebra, Jacobi relation \

Example: The generators 7; and the structure constants Cj;; are invariant tensors:

i
_ﬁk+j\+>§.

Rewdraw, obtain the Lie algebra and the Jacobi relation

XY

T, — T, = iCupTdk.

A T

Czjm ka;l Cljm Omk:z zml Cj km -




Part III: Exceptional magic |

= W =

primitive invariants classification
Eg family
exceptional magic

why did you do this?




% Invariance grups; classification |

Strategy:
Primitive invariants I nvariance group
ad SU(n)
. s | o
Jaq Egt...
qqaq Et...
higher order Egt...

Example: E; primitives are:

a sesquilinear invariant ¢gq,
a skew symmetric gp invariant, and

a symmetric gqqq .




(G, and Ejy families of invariance groups |

primitives: * R —

two relations onerdation

- / \ 5:\6

Jacobi alternatlwty

e IIDCIC s

any adjoint representation

/

quartic primitive no quartic primitive

SUm), SOM), Spn) E, family




1 ‘ Es family of invariance groups |
primitives: symmetric quadratic, antisymmetric cubic primitive invariants:
j 9 * — é Y

No quartic primitive invariant exists: Any invariant tensor a linear sum over the tree invariants

satisfying the Jacobi relation:

constructed from the quadratic and the cubic invariants,

Remember

the one graph that launched this whole odyssey?




% FEg family: Two-index tensors |

the cubic invariant:

>—< and

>—< induces a decomposition of A?2A antisymmetric tensors:

O o

-

R

Jacobi relation: only two linearly independent tree invariants in A® A — A® A constructed from

-5 ()

matrix in A® A — A® A can decompose only the symmetric subspace Sym?A.




FEg family: primitiveness assumption \

The assumption that there exists no primitive quartic in-

variant is the defining relation for the Eg family.

4-index loop invariant Q? is expressible in terms of Q;jx =

splits the traceless symmetric subspace into 2 irreps

Oz{ +p

—

—

S

S

0=(Q*+ pQ + ¢q1)P,.

Symmetry, the Jacobi relation:

5

j ——

+4q

i

—e— |

K Cijmomkﬁ and 5@'3’»

(Q2 - éQ - m1> P,=(Q-A)(Q—-AN1)P,=0.

so the two eigenvalues (of the quadratic Casimir operator) related to N by

N — 2\

1
6

5

3(N + 2)

= 0.




% FEg family: quadratic Casimir \

Eigenvalue (quadratic Casimir operator) satisfies

1 5
M- —— =0,
6 3(N +2)
Lie group dimension NV is an integer: a convenient reparametrization
1
A= —ro
m — 6

yields a Diphantine condition on the parameter m (i.e., the quadratic Casimir):

‘ N = —122 + 10m + 360/m . \

keep computing ...




% Eg family: Diphantine conditions |

The dimension formulas for irreps yield a bevy of Diphantine conditions:

N = —122 + 10m + 360/m.
P 5(m — 6)*(5m — 36)(2m — 9)
- m(m + 6) ’
i 270(m — 6)*(m — 5)(m — 8)
" m2(m + 6) '
 5(m—5)(m —8)(m — 6)2(2m — 15)(5m —36)
de = m3(3 - m)(6 + m) (36 =m)

groups.

NG

A® A decomposes into 5 irreducible reps. Sym®A decomposed likewise, “after some algebra”.

Our homework problem done: a reduction of the adjoint rep 4-vertex box for all exceptional Lie

)




% Eg family: Diophantine conditions |

All solutions of the (known) Diophantine conditions only 9 solutions (!):

m |5 8 9 10 12 15 18 24 36
N |0 3 8 14 28 52 78 133 248
ds (0 0 1 I 56 273 650 1,463 0
de |0 -3 0 64 700 4,09 11,648 40,755 147,250
da |0 0 27 189 1,701 10,829 34,749 152,152 779,247

Ey 248-dim representation, plus all exceptional Lie algebras, in one family!

keep computing ...




Exhaustive check of all primitive invariants

%_

Recall: we were working through the list of “all” possible invariance groups:

Primitive invariants I nvariance group
aq SuU(n)
qq sofn)/ Sp(n)
qqq Egt...
qqaqq EA+...
higher order Egt...

keep computing ...




% Exceptional magic |

Tabulate the solutions to all V®V — V®V Diophantine conditions

m |8 9 10 12 15 18 24 36
Fy o 0 3 8 21 52
Eg 0O 0 2 8 16 35 78
E-10 1 3 9 21 35 66 133
Eg |3 8 14 28 52 78 133 248

Surprise!: all of them are the one and the same Diphantine condition

magically arranging all exceptional families into a

Magic Triangle

@ -




Magic Triangle |

0
0
01
: U()
. 0 1
0 3
Aq
1 3
2 9
2U() 3A;
2 4
8 21
A, | Cj
8 14
16 35
2A,| As
9 15
35 |66
As| Dg
20 ° |32
78 133
Ee | E-
78 133

Magic triangle: All solutions of the Diophantine conditions

.




% A brief history of exceptional magic |

1975-77: Primitive invariants construction of all semi-simple Lie algebras®:?, except for the Fy

\

family.

1979: Eg family.

1981: Magic Triangle®. The total number of citations in the next 22 years: 2 (two).
1996: Deligne* conjectures for Ay, Ay, Go, Fy, Es, E7 and Eg family.

2001: Landsberg and Manivel® interpret the Magic Triangle, derive an infinity of higher-dimensional

rep formulas.

2002: Deligne and Gross®: the Magic Triangle.

1P, Cvitanovié, Phys. Rev. D14, 1536 (1976)

2P. Cvitanovi¢, Oxford preprint 40/77 (June 1977); www.nbi .dk/ChaosBook

3P. Cvitanovié, Nucl. Phys. B188, 373 (1981)

4P. Deligne, C.R. Acad. Sci. Paris, Sér. I, 322, 321 (1996)

®J. M. Landsberg and L. Manivel, Advances in Mathematics 171, 59-85 (2002); arXiv:math.AG/0107032,

2001
P. Deligne and B. H. Gross, C.R. Acad. Sci. Paris, Sér. I, 335, 2002 (2002)
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Epilogue
% Eplogte

“Why did you do this?” you might well ask.
OK, here is an answer.

If gauge invariance of QED and QCD guarantees that all UV and IR
divergences cancel, why not also the finite parts?

Electron magnetic moment: each Feynman diagram is of order of 10 to 100, but for gauge
invariant subsets a rather surprising thing happens'; every subset computed so far adds up to

4L (g)n
2\

If this continues to higher orders, the “zeroth” order approximation to the electron magnetic

approximately

moment is given by

1
5(9 —2) = 5 (1 - (9)2)2 + “corrections” .

1P, Cvitanovié, “Asymptotic estimates and gauge invariance,” Nucl. Phys. B127, 176 (1977)

N




% ‘ A great heresy \

Dyson has shown that the perturbation expansion is an asymptotic series, in the sense that the

~

nth order contribution should be exploding combinatorially
1

an
_(g_2>g..._|_nn(_) + e
2 T

and not growing slowly like my estimate
1 a\"
59 -2) tnl—) +

| am looking for a simpler gauge theory in which | can compute many orders in perturbation

theory and check the conjecture - hence devised fast methods to compute the group weights of

many Feynman diagrams in non-Abelian gauge theories.

QCD quarks are supposed to come in three colors. This requires evaluation of SU(3) group
theoretic factors, something anyone can do. In the spirit of Teutonic completeness, | wanted to
check all possible cases; what would happen if the nucleon consisted of 4 quarks, doodling

88— @) it —1).

and so on, and so forth. In no time, and totally unexpectedly, all exceptional Lie groups arose, not

from conditions on Cartan lattices, but on the same geometrical footing as the classical invariance




groups of quadratic norms, SO(n), SU(n) and Sp (n).

No dice. To this day | still do not know how to prove or disprove the conjecture.




% Magic ahead \

Nobody, but truly nobody in those days showed a glimmer of interest in the exceptional Lie
algebra parts of this work, so there was no pressure to publish it before completing it:

1) find the algorithms that reduce any bubble diagram to a number for any semi-simple Lie
algebra. The task is accomplished for GGo, but for Fy, Eg, E7 and Ej this is still an open problem.

This, perhaps, is only matter of algebra (all of my computations were done by hand, mostly on

trains and in airports), but the truly frustrating unanswered question is:

2) Where does the Magic Triangle come from?
3) Why is it symmetric across the diagonal?
4) Is there a mother of all Lie algebras, some complex function which yields the Magic Triangle

for a set of integer values?

And then there is a practical issue of unorthodox notation: transferring birdtracks from hand
drawings to LaTeX took another 21 years. In this | was rescued by Anders Johansen who

undertook drawing some 4,000 birdtracks needed to complete this manuscript, of elegance far

outstripping that of the old masters.

.




